Numerous outcome prediction models have been developed for mortality and functional outcome after spontaneous intracerebral haemorrhage (ICH). However, no outcome prediction model for ICH has considered the impact of care restriction. To develop and compare results of the artificial neural networks (ANN) and logistic regression (LR) models, based on initial clinical parameters, for prediction of mortality after spontaneous ICH. Analysis has been conducted on consecutive dataset of patients with spontaneous ICH, over 5-year period in tertiary care academic hospital. Patients older than 18 years were eligible for inclusion if they had been presented within 6 h from the start of symptoms and had evidence of spontaneous supratentorial ICH on initial brain computed tomography within 24 h. Initial clinical parameters have been used to develop LR and ANN prediction models for hospital mortality as outcome measure. Models have been accessed for discrimination and calibration abilities. We have analyzed 411 patients (199 males and 212 females) with spontaneous ICH, medically treated and not withdrawn from therapy, with average age of 67.35 years. From them, 256 (62.29%) patients died during hospital treatment and 155 (37.71%) patients survived. In the observed dataset, ANN model overall correctly classified outcome in 93.55% of patients, compared with 79.32% of correct classification for the LR model. Discrimination and calibration parameters indicate that both models show an adequate fit of expected and observed values, with superiority of ANN model. Our results favour the ANN model for prediction of mortality after spontaneous ICH. Further studies of the strengths and limitations of this method are needed with larger prospective samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13760-012-0093-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!