In clinical settings, cellular resistance to chemotherapy and radiotherapy is a significant component of tumor treatment failure. The mechanisms underlying the control of localization of DNA repair proteins play a key role in the regulation of DNA repair activity. The DNA repair protein XRCC4, which is a regulator of DNA ligase IV activity, might be a key contributor to not only chemoresistance to anticancer agents, e.g., etoposide, but also radioresistance. However, it remains unclear whether XRCC4, which is a key player in nonhomologous DNA-end-joining (NHEJ), plays a role in low-dose radioresistance. In this study, we confirmed that human XRCC4 tagged with the enhanced green fluorescent protein (EGFP-XRCC4), as well as the DNA damage sensor Ku80 tagged with EGFP, mainly localized in the nuclei and its accumulation at DNA damaged sites began immediately after microirradiation. Moreover, we generated and characterized cell lines expressing EGFP-XRCC4 in XRCC4-deficient cells, i.e., XR-1 cells derived from the Chinese hamster ovary. Our findings showed that XR-1 cells were more sensitive than controls (CHO-K1) to low-dose X-irradiation (<0.5 Gy), whereas the radiosensitive phenotype of XR-1 cells was rescued by the expression of EGFP-XRCC4. We also confirmed that EGFP-XRCC4 expressed stably in XR-1 cells stabilizes DNA ligase IV. Altogether, these cell lines might be useful for the study of not only the dynamics and function of XRCC4, but also the molecular mechanism underlying the cellular resistance via the NHEJ pathway to low-dose radiation in mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.12-0112DOI Listing

Publication Analysis

Top Keywords

dna repair
12
cell lines
8
human xrcc4
8
xr-1 cells
8
dna
6
establishment hamster
4
hamster cell
4
lines egfp-tagged
4
egfp-tagged human
4
xrcc4
4

Similar Publications

Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers.

View Article and Find Full Text PDF

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

Phosphorylation-dependent WRN-RPA interaction promotes recovery of stalled forks at secondary DNA structure.

Nat Commun

January 2025

Mechanisms, Biomarkers and Models Section - Genome Stability Group, Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 - 00161, Rome, Italy.

The WRN protein is vital for managing perturbed replication forks. Replication Protein A strongly enhances WRN helicase activity in specific in vitro assays. However, the in vivo significance of RPA binding to WRN has largely remained unexplored.

View Article and Find Full Text PDF

TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.

View Article and Find Full Text PDF

Metastatic uveal melanoma (UM) patients often initially present with limited symptoms despite a poor prognosis, complicating communication with patients and caregivers. Early Together (NCT04728113) is a randomized Phase III trial that integrates early palliative care through systematic joint visits involving the palliative care team and the medical oncologist, compared with standard oncological care, in 162 metastatic UM patients beginning systemic treatment. This collaboration aims to enhance patient functioning, improve quality of life and facilitate coping mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!