Background: Human mesenchymal stem cells (MSC) have been utilized for cardiac regeneration after myocardial damage. Their clinical effects are marginal and only a minority of administered cells could make their way into the myocardium. The chemokine receptor CXCR4 has been identified as crucial for migration and homing of stem cells. In this study we overexpressed CXCR4 on human MSC to improve cell trafficking and tissue repair.
Methods: Human MSC were isolated from the spongiosa of tibia and femur as well as from pelvic bone marrow. MSC were characterized by differentiation assays and FACS analysis. CXCR4 was overexpressed by mRNA-nucleofection. Intracellular signaling was analyzed to demonstrate functionality of CXCR4. The modified Boyden chamber, wounding assays and time lapse microscopy were utilized to investigate MSC migration.
Results: MSC did not express relevant amounts of CXCR4 spontaneously. CXCR4 could be overexpressed in 93% of MSC with a cell viability of 62%. Functionality of the overexpressed CXCR4 was demonstrated by a significant cytosolic Ca(2+) increase and activation of different MAP kinases followed by SDF-1α stimulation. In contrast no improvement of cell migration could be observed. There was a strong basal MSC chemokinesis independent from CXCR4 expression.
Conclusions: CXCR4 could be effectively overexpressed in human MSC by mRNA-nucleofection. Despite functionality of CXCR4 MSC were characterized by a strong basal chemokinesis that could not be further enhanced by CXCR4 overexpression. As isolation, culture and nucleofection of pelvic bone marrow-derived MSC basically fulfill the GMP-requirements our approach seems suited for an in vivo application in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2012.05.065 | DOI Listing |
Front Immunol
January 2025
National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
[This corrects the article DOI: 10.3389/fimmu.2024.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFFront Oncol
January 2025
The Second Department of General Surgery, the Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang, China.
Background: Stromal-cell-derived factor 1 (SDF-1) plays a crucial role in hematopoiesis and has been implicated in acute myeloid leukemia (AML) pathogenesis. Understanding its relationship with chemotherapy outcomes could lead to improved therapeutic approaches for elderly AML patients.
Methods: This study retrospectively analyzed the medical records of elderly AML patients (n = 187) and compared serum SDF-1α levels with age-matched controls (n = 120).
J Pathol Clin Res
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.
CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.
View Article and Find Full Text PDFInt J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!