Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To simulate coefficient of thermal expansion (CTE)-generated stress fields in monolithic metal and ceramic crowns, and CTE mismatch stresses between metal, alumina, or zirconia cores and veneer layered crowns when cooled from high temperature processing.
Materials And Methods: A 3D computer-aided design model of a mandibular first molar crown was generated. Tooth preparation comprised reduction of proximal walls by 1.5 mm and of occlusal surfaces by 2.0 mm. Crown systems were monolithic (all-porcelain, alumina, metal, or zirconia) or subdivided into a core (metallic, zirconia, or alumina) and a porcelain veneer layer. The model was thermally loaded from 900°C to 25°C. A finite element mesh of three nodes per edge and a first/last node interval ratio of 1 was used, resulting in approximately 60,000 elements for both solids. Regions and values of maximum principal stress at the core and veneer layers were determined through 3D graphs and software output.
Results: The metal-porcelain and zirconia-porcelain systems showed compressive fields within the veneer cusp bulk, whereas alumina-porcelain presented tensile fields. At the core/veneer interface, compressive fields were observed for the metal-porcelain system, slightly tensile for the zirconia-porcelain, and higher tensile stress magnitudes for the alumina-porcelain. Increasingly compressive stresses were observed for the metal, alumina, zirconia, and all-porcelain monolithic systems.
Conclusions: Variations in residual thermal stress levels were observed between bilayered and single-material systems due to the interaction between crown configuration and material properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1532-849X.2012.00866.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!