Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract.

BMC Complement Altern Med

Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.

Published: June 2012

Background: Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated.

Results: Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC(50) = 11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC(50) = 13.6%; v/v) and decreased the amount of melanin (IC(50) = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS(+) free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern.

Conclusions: Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404006PMC
http://dx.doi.org/10.1186/1472-6882-12-72DOI Listing

Publication Analysis

Top Keywords

flower extract
44
grandiflora flower
28
magnolia grandiflora
12
flower
12
tyrosinase activity
12
extract
11
antioxidant properties
8
properties magnolia
8
mushroom tyrosinase
8
intracellular tyrosinase
8

Similar Publications

The ambition to utilize agricultural by-products has spotlighted tomato leaves as a promising source for plant-based proteins. High-yielding protein extractability is key for its industrial use, but previous studies reported decreased protein extractability at later stages of plant development. This study investigated the underlying factors in protein extractability through a comprehensive proteomics analysis across four plant developmental stages (vegetative, flowering, fruit-forming, mature-fruit).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Benign prostatic hyperplasia (BPH) is one of the most prominent diseases of the aged men urinary system. It is associated with cellular proliferation, hormonal imbalance, oxidative stress, inflammation and apoptosis. Traditionally, Thymelaea hirsuta (L.

View Article and Find Full Text PDF

Disocatus ackermannii, commonly referred to as Orchid Cactus, is a striking succulent belonging to the Cactaceae family. Its unique appearance and captivating characteristics make it a sought-after addition to gardens and courtyards beautification. In June 2023, 20-30% of D.

View Article and Find Full Text PDF

Physiological and multi-omics analysis revealed the mechanism of arbuscular mycorrhizal fungi to cadmium toxicity in green onion.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Cadmium (Cd) is a highly toxic agricultural pollutant that inhibits the growth and development of plants. Arbuscular mycorrhizal fungi (AMF) can enhance plant tolerance to Cd, but the regulatory mechanisms in Allium fistulosum (green onion) are unclear. This study used a Cd treatment concentration of 1.

View Article and Find Full Text PDF

Novel core-shell flower-like polyamine/C dual-functional magnetic titanium dioxide-based oligopolymer (FeO@fTiO-PAPMA/C) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The FeO@fTiO-PAPMA/C microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!