Background And Objective: Deep brain stimulation (DBS) candidates with neurologic diseases such as unruptured aneurysm present additional challenges to neurosurgeons when craniotomy must precede DBS surgery. Such craniotomy may potentially overlap with intended burr hole sites for the later insertion of DBS electrodes, and the skin incision for craniotomy may lie very close to or intersect with that for the burr holes. We report here a case of forehead craniotomy prior to DBS surgery in which we employed a neuronavigation system to simulate locations for the craniotomy and burr holes.

Method:   A 62-year-old male patient with Parkinson's disease was a candidate for DBS. He also had an aneurysm and was planned first to undergo frontal craniotomy for clipping before the DBS surgery. The locations of the craniotomy, burr holes, and skin incisions were therefore simulated using a neuronavigation system during craniotomy.

Results: Two weeks after the craniotomy, the patient underwent DBS surgery. Planning software confirmed the absence of cortical veins beneath the entry points of tentative burr holes and aided trajectory planning. The DBS surgery was performed without the interference of the burr holes and head pins and the craniotomy.

Conclusion: Simulation of the locations of craniotomy and burr holes using a neuronavigation system proved valuable in the present case of frontal craniotomy before DBS surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1403.2012.00466.xDOI Listing

Publication Analysis

Top Keywords

dbs surgery
24
burr holes
20
neuronavigation system
12
locations craniotomy
12
craniotomy burr
12
craniotomy
10
dbs
9
burr
8
burr hole
8
hole sites
8

Similar Publications

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Our aim was to evaluate the possible long-term cerebral deposition of amyloid-β in patients with PD treated with subthalamic nucleus deep brain stimulation (STN-DBS) and its possible influence on axial and cognitive variables. Consecutive PD patients treated with bilateral STN-DBS with a long-term follow-up were included. The amyloid-β deposition was evaluated postoperatively through an 18F-flutemetamol positron emission tomography (PET) study.

View Article and Find Full Text PDF

Bilateral Lesions in Parkinson's Disease: Gaps and Controversies.

Mov Disord

December 2024

Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, INSERM, Grenoble, France.

Bilateral lesions of the basal ganglia using termocoagulation or radiation for improving tremor, bradykinesia, and rigidity in people with Parkinson's disease (PD) have been performed starting several decades ago, especially when levodopa and deep brain stimulation (DBS) surgery were not available. However, because of unclear additional benefit compared to unilateral lesion, and particularly to the evidence of increased adverse events occurrence, bilateral lesions were basically abandoned at the end of the 20th century. Therefore, bilateral DBS has become the standard procedure to treat PD.

View Article and Find Full Text PDF

Background: In rare circumstances, an implanted deep brain stimulation device will develop impedance issues across its contacts. Even more rare is the resultant inability to program a patient effectively, or that the patients' prior programming settings become unusable.

Objective: In this study we investigate this occurrence across the device manufacturers implanted, and whether this could be resolved.

View Article and Find Full Text PDF

Introduction: Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!