Stable closure of skin wounds with engineered skin substitutes (ESS) requires indefinite mitotic capacity to generate the epidermis. To evaluate whether keratinocytes in ESS exhibit the stem cell phenotype of label retention, ESS (n = 6-9/group) were pulsed with 5-bromo-2'-deoxyuridine (BrdU) in vitro, and after grafting to athymic mice (n = 3-6/group). Pulse and immediate chase in vitro labeled virtually all basal keratinocytes at day 8, with label uptake decreasing until day 22. Label retention in serial chase decreased more rapidly from day 8 to day 22, with a reorganization of BrdU-positive cells into clusters. Similarly, serial chase of labeled basal keratinocytes in vivo decreased sharply from day 20 to day 48 after grafting. Label uptake was assessed by immediate chases of basal keratinocytes, and decreased gradually to day 126, while total labeled cells remained relatively unchanged. These results demonstrate differential rates of label uptake and retention in basal keratinocytes of ESS in vitro and in vivo, and a proliferative phenotype with potential for long-term replication in the absence of hair follicles. Regulation of a proliferative phenotype in keratinocytes of ESS may improve the biological homology of tissue-engineered skin to natural skin, and contribute to more rapid and stable wound healing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069259PMC
http://dx.doi.org/10.1111/j.1524-475X.2012.00807.xDOI Listing

Publication Analysis

Top Keywords

basal keratinocytes
16
keratinocytes ess
12
label uptake
12
engineered skin
8
skin substitutes
8
athymic mice
8
label retention
8
day label
8
serial chase
8
day day
8

Similar Publications

Background: In humans, the presence of an even distribution of melanocytes within the epidermal basal layer allows for uniform pigmentation in healthy and young individuals. Moreover, despite high variability in skin colours and tones, interindividual melanocyte density variability is low. However, dogs display a high intraindividual pigmentary variability in different anatomical areas.

View Article and Find Full Text PDF
Article Synopsis
  • Skin and hair development involves complex gene regulation to ensure proper growth and maintenance.
  • Elf5 is identified as a key transcription factor that influences keratinocyte proliferation and differentiation in skin and hair follicles.
  • Research on Elf5 could pave the way for new treatments in stem cell research, regenerative medicine, and age-related skin issues.
View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe human disease. During late infection, EBOV virions are on the skin's surface; however, the permissive skin cell types and the route of virus translocation to the epidermal surface are unknown. We describe a human skin explant model and demonstrate that EBOV infection of human skin via basal media increases in a time-dependent and dose-dependent manner.

View Article and Find Full Text PDF

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!