Vitamin K1-loaded lipid-core nanocapsules: physicochemical characterization and in vitro skin permeation.

Skin Res Technol

Postgraduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Published: February 2013

Background: The incorporation of substances in nanocarriers can modulate and/or manage their delivery profiles (immediate or sustained) and permeation through skin. Consequently, drug nanencapsulation intended for topical treatment can reduce the systemic absorption of the substance.

Objective: To obtain and characterize vitamin K1-loaded lipid core nanocapsules as well as to determine whether the nanoencapsulation influences the skin permeation of this vitamin.

Methods: The skin permeation study was performed by means of Franz-type diffusion cells followed by the tape stripping and retention techniques. The vitamin K1-loaded lipid core nanocapsules were obtained by the preformed polymer precipitation method and the particles were characterized.

Results: The nanocapsules presented average diameter of 211 ± 2 nm, pH of 5.7 ± 0.3, zeta potential of -14.9 ± 0.6 mV and drug content of 10.2 mg/mL (102.1%). The physical stability of the nanocapsule suspension was verified using multiple light backscattering analysis. The amount of vitamin K1 in the dermis after 8 h of drug permeation was higher when the nanocapsules were applied compared to the control. Moreover, retention in the outermost skin layer and a decrease in the skin permeation to the receptor compartment due to the nanoencapsulation were observed.

Conclusion: Thus, nanoencapsulation can lead to the selective permeation of vitamin K1 through the skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0846.2012.00631.xDOI Listing

Publication Analysis

Top Keywords

skin permeation
16
vitamin k1-loaded
12
k1-loaded lipid
8
lipid core
8
core nanocapsules
8
skin
7
permeation
7
vitamin
5
nanocapsules
5
k1-loaded lipid-core
4

Similar Publications

This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength.

View Article and Find Full Text PDF

Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).

View Article and Find Full Text PDF

Smart core-shell microneedles for psoriasis therapy: In situ self-assembly of calcium ion-coordinated dexamethasone hydrogel.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:

Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.

View Article and Find Full Text PDF

Gas-propelled anti-hair follicle aging microneedle patch for the treatment of androgenetic alopecia.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China. Electronic address:

Existing treatments for androgenetic alopecia (AGA) are unsatisfactory, owing to the two major reasons: (1) Oxidative stress and vascularization deficiency in the perifollicular environment provoke the premature senescence of hair follicles, limiting transformation from the telogen to the anagen phase; (2) The amount of drug delivered to the perifollicular region located in the deep dermis is very limited for passive drug delivery systems. Herein, we developed a gas-propelledmicroneedle patch integrated with ferrum-chelated puerarin/quercetin nanoparticles (PQFN) to increase drug accumulation in hair follicles and reshape the perifollicular environment for improved hair-regenerating effects. PQFN can rejuvenate testosterone (Tes)-induced senescence of dermal papilla cells by scavenging ROS, restoring mitochondrial function, regulating signaling pathways related to hair regeneration, and upregulating hair growth-promoting genes.

View Article and Find Full Text PDF

Purpose: The main purpose of this study was to optimize a cyclodextrin-based nanogel of flurbiprofen (FP) for prolonged dermal administration and evaluate its stability, in vitro release, ex vivo skin permeation, and in vivo pharmacokinetic profile.

Methods: The nanogels were prepared via emulsification/solvent evaporation process and optimized through design of experiments. Optimal formulation was characterized via particle size (PS), polydispersity index (PDI), zeta potential (ZP), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD), solubility, stability, in vitro release/ex vivo permeation studies and mathematical modeling, and pharmacokinetic studies conducted in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!