There is no doubt that the outstanding optical and electronic properties that low-dimensional carbon-based nanomaterials exhibit call for their implementation into optoelectronic devices. However, to harvest the enormous potential of these nanocarbons it is essential to probe them in multifunctional electron donor-acceptor systems, placing particular attention on the interactions between electron donors/electron acceptors and nanocarbons. This feature article outlines challenges and recent breakthroughs in the area of interfacing organic and inorganic semiconductors with low-dimensional nanocarbons that range from fullerenes (0D) and carbon nanotubes (1D) to graphene (2D). In the context of organic semiconductors, we focus on aromatic macrocycles and extended tetrathiafulvalenes, and CdTe nanocrystals/quantum dots represent the inorganic semiconductors. Particular emphasis is placed on designing and probing solar energy conversion nanohybrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la301152s | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China., CHINA.
Coordination polymers (CPs) are promising for direct X-ray detection and imaging owing to higher designability and outstanding stability, however, it remains a challenge to achieve highly X-ray detection performance, particularly both high sensitivity and low detection limit at the same operating voltage. Herein, we construct a new conjugated CP {[Co(BPTTz)(DIPA)] DMA}n (1, BPTTz = 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole, H2DIPA = 2,5-diiodoterephthalic acid, DMA = N, N'-dimethylacetamide), with multi-channel charge transfer by regulating the linker mediated electronic-state, which reduces carrier losses resulting from recombination or quenching, enhances the efficiency of charge separation and transfer, thus further optimizes X-ray detection performance. The semiconductor prepared based on this strategy achieves record values including the highest mobility-lifetime product (μτ, 8.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.
View Article and Find Full Text PDFSmall
December 2024
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Tumor hypoxia and heat resistance as well as the light penetration deficiency severely compromise the phototherapeutic efficacy, developing phototherapeutic agents to overcome these issues has been sought-after goal. Herein, a diradical-featured organic small-molecule semiconductor, namely TTD-CN, has been designed to show low exciton binding energy of 42 meV by unique dimeric π-π aggregation, promoting near-infrared (NIR) absorption beyond 808 nm and effective photo-induced charge separation. More interestingly, its redox potentials are tactfully manipulated for water splitting to produce O and reduction of O to generate O .
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!