A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mitochondrial free [Ca(2+)] dynamics measured with a novel low-Ca(2+) affinity aequorin probe. | LitMetric

Mitochondrial free [Ca(2+)] dynamics measured with a novel low-Ca(2+) affinity aequorin probe.

Biochem J

Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, E-47005 Valladolid, Spain.

Published: August 2012

AI Article Synopsis

  • Mitochondria can rapidly accumulate high levels of calcium ions (Ca(2+)) during cell stimulation due to their membrane potential, potentially reaching millimolar concentrations within seconds.
  • A new, modified version of the photoprotein aequorin has been developed to accurately measure mitochondrial Ca(2+) levels over long periods without being consumed, addressing previous limitations of existing probes.
  • Experimental results showed that adding Ca(2+) to HeLa cells produced sustained high [Ca(2+)](M) levels, demonstrating the ability to monitor Ca(2+) dynamics effectively in living cells with the new probe.

Article Abstract

Mitochondria have a very large capacity to accumulate Ca(2+) during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca(2+)](M) (mitochondrial [Ca(2+)]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca(2+)](M) during prolonged stimulation has been previously precluded by the high Ca(2+) affinity of the probes available. We have now developed a mitochondrially targeted double-mutated form of the photoprotein aequorin which is able to measure [Ca(2+)] in the millimolar range for long periods of time without problems derived from aequorin consumption. We show in the present study that addition of Ca(2+) to permeabilized HeLa cells triggers an increase in [Ca(2+)](M) up to an steady state of approximately 2-3 mM in the absence of phosphate and 0.5-1 mM in the presence of phosphate, suggesting buffering or precipitation of calcium phosphate when the free [Ca(2+)] reaches 0.5-1 mM. Mitochondrial pH acidification partially re-dissolved these complexes. These millimolar [Ca(2+)](M) levels were stable for long periods of time provided the mitochondrial membrane potential was not collapsed. Silencing of the mitochondrial Ca(2+) uniporter largely reduced the rate of [Ca(2+)](M) increase, but the final steady-state [Ca(2+)](M) reached was similar. In intact cells, the new probe allows monitoring of agonist-induced increases of [Ca(2+)](M) without problems derived from aequorin consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20120423DOI Listing

Publication Analysis

Top Keywords

free [ca2+]
8
mitochondrial membrane
8
membrane potential
8
long periods
8
periods time
8
problems derived
8
derived aequorin
8
aequorin consumption
8
[ca2+]m
7
mitochondrial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!