Small interfering RNAs (siRNAs) are rapidly emerging as new therapeutic tools for the treatment of some of the deadly diseases such as cancer. However, poor cellular uptake and instability in physiological milieu limit its therapeutic potential, hence there arises a need of a delivery system which can efficiently and repeatedly deliver siRNA to the target cells. Nanoparticles have shown immense potential as suitable delivery vectors with enhanced efficacy and biocompatibility. These delivery vectors are usually few nanometers in size, which not only protects siRNA against enzymatic degradation but also leads to tissue and cellular targeting. Nanoparticles prepared from various cationic polymers like polyethylenimine, and chitosan have been largely exploited as they bear several advantages such as, ease of manipulation, high stability, low cost and high payload. This review summarizes some of the recent patents on siRNA delivery employing polymer or lipid-based nano-vectors for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187221512801327406 | DOI Listing |
Biomol Biomed
January 2025
Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, India.
Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China. Electronic address:
The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:
Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!