Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid.

ACS Nano

Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Biology, and College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Published: July 2012

Herein a photon-manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of mesoporous silica nanoparticles. The photoisomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but releases them when light wavelength turns to the UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for the cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light-wavelength-sensitive. Switching of the light from visible to the UV range uncapped the pores, causing the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photocontrolled drug release system could find potential applications in cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407578PMC
http://dx.doi.org/10.1021/nn3018365DOI Listing

Publication Analysis

Top Keywords

drug release
12
mesoporous silica
12
azobenzene-modified nucleic
8
release system
8
release
5
mesoporous
5
photon-manipulated drug
4
release mesoporous
4
mesoporous nanocontainer
4
nanocontainer controlled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!