A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia. | LitMetric

Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida 32209, USA.

Published: June 2012

PURPOSE. Hypoxia-induced apoptosis is responsible for reduced retinal ganglion cell (RGC) viability in a variety of chronic ocular disorders. Sirtuin 1 (SIRT1) plays an important role in preserving cell viability during hypoxia. We investigated the role of SIRT1 in sustaining RGC viability in an in vitro model of hypoxia. METHODS. Staurosphorine-differentiated RGCs (RGC-5) received varying hypoxic concentrations (100-500 μM) of cobalt chloride (CoCl2) for 24 hours. Hypoxia-induced cell viability was assessed by WST-1 assay. The role of SIRT1 in promoting viability was determined indirectly via sirtinol (SIRT1 inhibitor). Hypoxia-induced apoptosis was evaluated by measuring stress-activated protein kinase/c-jun N-terminal kinase (SAPK/JNK) and caspase 3 activity. Vascular endothelial growth factor (VEGF) was measured to ascertain the influence of SIRT1. RESULTS. CoCl2 concentrations greater than 100 μM resulted in significantly reduced RGC viability (P=0.01). CoCl2 treatment increased SIRT1 levels significantly (P<0.01): 100 (6.5-fold), 200 (6-fold), 300 (3.5-fold), and 400 μM (4.5-fold). Phosphorylated SAPK/JNK increased 36-fold (200 μM CoCl2 concentration), then plateaued at the 300- (25-fold) and 400-μM (27.8-fold) CoCl2 concentrations (P<0.01). CoCl2 and sirtinol treatment increased Caspase 3 activity (P<0.05). VEGF release was significantly higher than control at the 100-μM CoCl2 concentrations (P<0.01). Sirtinol reduced RGC viability, SIRT1 levels, and VEGF release (P<0.01) while having greater effect on SAPK/JNK phosphorylation. CONCLUSIONS. SIRT1 significantly influences RGC viability. Sirtinol's effect reflects the interaction SIRT1 has with apoptotic signaling proteins. This investigation demonstrated SIRT1 importance in forestalling the effects of hypoxia-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.11-9259DOI Listing

Publication Analysis

Top Keywords

rgc viability
12
retinal ganglion
8
hypoxia-induced apoptosis
8
cell viability
8
role sirt1
8
viability
6
sirt1
6
evaluation sirtuin
4
role
4
sirtuin role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!