The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER), and the transcription factor X-box binding protein 1 spliced (XBP1S), a regulator of the UPR, is known to be important for ER stress (ERS)-mediated apoptosis and cell growth, but the molecular mechanism underlying these processes remains unexplored. Here, we report that knockdown of XBP1S by an siRNA silencing approach increased the expression of ERS-associated molecules. The overexpression of XBP1S stimulated, whereas its knockdown inhibited, cell proliferation in chondrocytes and chondrosarcoma cells; in addition, overexpression of XBP1S inhibited, while its repression enhanced, ERS-mediated apoptosis in chondrocytes and chondrosarcoma cells. Furthermore, XBP1S-mediated inhibition of apoptosis in response to ERS is through the Erk1/2 signaling pathway and down-regulation CHOP transcription factor. CHOP is one of the key downstream molecules known to be involved in ERS-mediated apoptosis. Collectively, these findings reveal a novel critical role of XBP1S in ERS-mediated apoptosis and the molecular mechanisms involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00418-012-0967-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!