Structural substrates for resting network disruption in temporal lobe epilepsy.

Brain

Neuroimaging of Epilepsy Laboratory, Department of Neurology and McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4 Canada.

Published: August 2012

AI Article Synopsis

  • Advanced magnetic resonance imaging methods help understand brain connectivity in conditions like drug-resistant temporal lobe epilepsy.
  • In a study with 35 patients and 20 healthy subjects, researchers analyzed how structural damage affects resting brain networks and assessed connectivity using methods like independent component analysis.
  • The findings revealed that patients exhibited reduced functional connectivity in key brain areas, which is influenced by grey matter density and white matter damage, suggesting that both cortical atrophy and microstructural changes impact brain function in this condition.

Article Abstract

Magnetic resonance imaging methods that measure interregional brain signalling at rest have been advanced as powerful tools to probe organizational properties of functional networks. In drug-resistant temporal lobe epilepsy, resting functional magnetic resonance imaging studies have primarily employed region of interest approaches that preclude a comprehensive evaluation of large-scale functional interactions. In line with the distributed nature of structural damage in this condition, we set out to quantify connectivity across the entire range of resting networks. Furthermore, we assessed whether connectivity is driven by co-localized structural pathology. We obtained resting state, diffusion tensor and anatomical imaging data in 35 patients with temporal lobe epilepsy and 20 healthy subjects on a 3 T scanner. Resting state networks were identified using independent component analysis, which allows an objective whole-brain quantification of functional connectivity. We performed group comparisons before and after correcting for voxel-wise grey matter density. In addition, we identified voxel-wise associations between resting connectivity and white matter coherence indexed by fractional anisotropy. Compared with controls, patients showed altered (typically reduced) functional connectivity between the hippocampus, anterior temporal, precentral cortices and the default mode and sensorimotor networks. Reduced network integration of the hippocampus was explained by variations in grey matter density, while functional connectivity of the parahippocampus, and frontal and temporal neocortices showed atypical associations with white matter coherence within pathways carrying connections of these regions. Our multimodal imaging study suggests that in temporal lobe epilepsy, cortical atrophy and microstructural white matter damage impact functional resting connectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/aws137DOI Listing

Publication Analysis

Top Keywords

temporal lobe
16
lobe epilepsy
16
functional connectivity
12
white matter
12
magnetic resonance
8
resonance imaging
8
resting state
8
grey matter
8
matter density
8
resting connectivity
8

Similar Publications

Objective: Temporal lobe epilepsy with hippocampal sclerosis (HS) is a surgically remediable syndrome. We determined temporal trends in the prevalence of hippocampal sclerosis surgeries and related factors.

Methods: We analysed a prospective cohort of adults who underwent epilepsy surgery at the NHNN, London, between 1990 and 2019.

View Article and Find Full Text PDF

Impaired semantic control in the logopenic variant of primary progressive aphasia.

Brain Commun

December 2024

Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK.

We investigated semantic cognition in the logopenic variant of primary progressive aphasia, including (i) the status of verbal and non-verbal semantic performance; and (ii) whether the semantic deficit reflects impaired semantic control. Our hypothesis that individuals with logopenic variant of primary progressive aphasia would exhibit semantic control impairments was motivated by the anatomical overlap between the temporoparietal atrophy typically associated with logopenic variant of primary progressive aphasia and lesions associated with post-stroke semantic aphasia and Wernicke's aphasia, which cause heteromodal semantic control impairments. We addressed the presence, type (semantic representation and semantic control; verbal and non-verbal), and progression of semantic deficits in logopenic variant of primary progressive aphasia.

View Article and Find Full Text PDF

Phaeohyphomycotic agents causing central nervous system (CNS) infection is rare and is known to affect immunocompetent individuals. We present a patient with a CNS phaeohyphomycotic abscess that had developed within a temporal lobe glioma. Magnetic resonance imaging (MRI) performed two months prior to the surgery showed only the presence of a neoplasm.

View Article and Find Full Text PDF

Developmental exposure to legacy environmental contaminants, medial temporal lobe volumes and spatial navigation memory in late adolescents.

Environ Res

January 2025

Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal (Québec), H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, chemin de la Côte-Sainte-Catherine, Montréal (Québec), H3T 1C5, Canada. Electronic address:

Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!