Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392104 | PMC |
http://dx.doi.org/10.1042/BSR20120050 | DOI Listing |
J Muscle Res Cell Motil
December 2024
Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy.
Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation.
View Article and Find Full Text PDFiScience
January 2024
Department of Biomedical Physiology and KinesiologySimon Fraser University, Burnaby, BC V5A 1S6, Canada.
Eur J Pharmacol
December 2023
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan. Electronic address:
Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed.
View Article and Find Full Text PDFBiochimie
November 2023
Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:
The definitive number of Sertoli cells (SCs), achieved during the proliferative periods, defines the spermatogenic capacity in adulthood. It is recognized that FSH is the main mitogen targeting SC and that it exerts its action, at least partly, through the activation of the PI3K/Akt/mTORC1 pathway. mTORC1 controls a large number of cellular functions, including glycolysis and cell proliferation.
View Article and Find Full Text PDFAging (Albany NY)
October 2020
Department of Urology, the Second Affiliated Hospital of Soochow University, Suzhou, China.
Activation of the PI3K/AKT/mTOR pathway promotes the progression of renal cell carcinoma (RCC). This study tested the anti-RCC cell activity of the PI3K/mTOR dual inhibitor, VS-5584. We show that VS-5584 inhibited PI3K/AKT/mTORC1/2 activation in established (786-O and A498 lines) and primary RCC cells, thereby suppressing cell survival, proliferation, migration and cell cycle progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!