In this study, we aimed at specific targeting of polycationic amphiphilic cyclodextrins (paCDs) to HepG2 cells via the asialoglycoprotein receptor (ASGPr). The transfection efficiencies of paCDs modified with galactose moieties were evaluated. In preliminary experiments, attempts to transfect HepG2 cells with pDNA complexed with different modified paCDs resulted in very low transfection levels. In additional series of experiments, we found out that nucleic acid/cyclodextrin complexes (CDplexes) were efficiently taken up by the cells and that photochemical internalization, which facilitates release from endosomes, did not improve transfection. Further experiments showed that pDNA can be readily released from the CDplexes when exposed to negatively charged vesicles. These observations imply that the lack of transfection cannot be attributed to a lack of internalization, release of CDplexes from the endosomal compartment, or release of free pDNA from the CDplexes. This in turn suggests that the nuclear entry of the pDNA represents the main limiting factor in the transfection process. To verify that HepG2 cells were transfected with targeted CDplexes containing mRNA, which does not require entry into the nucleus for being translated. With mRNA encoding the green fluorescent protein, fractions of GFP-positive cells of up to 31% were obtained. The results confirmed that the galactosylated complexes are specifically internalized via the ASGPr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc3001003 | DOI Listing |
Hepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.
NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Hubei Shizhen Laboratory, Wuhan, China.
Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS 38677, United States.
Cinnamon is one of the oldest known spices used in various food delicacies and herbal formulations. Cinnamaldehyde is a primary active constituent of cinnamon and substantially contributes to the food additive and medicinal properties of cinnamon. This report deals with cinnamaldehyde bioaccessibility, metabolic clearance, and interaction with human xenobiotic receptors (PXR and AhR).
View Article and Find Full Text PDFToxicol Rep
June 2025
Department of Environmental Science, Baylor University, Waco, TX 76798, USA.
Over the past two decades, research has increasingly focused on the interactions between diet, gut microbiota, and host organisms. Recent evidence suggests that tryptophan, an essential amino acid, can be metabolized by gut microbiota into indoles, which have significant biological effects. However, most research is limited to indole and its liver metabolite, indoxyl sulfate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!