Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ∼48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R) D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4720941DOI Listing

Publication Analysis

Top Keywords

temperature dependence
16
waiting time
12
rotational waiting
12
supercooled water
8
super-arrhenius temperature
8
jump model
8
rotational
7
time
5
rotational dynamics
4
dynamics supercooled
4

Similar Publications

Introducing halogen-bonded gates into zeolitic frameworks for efficient benzene/cyclohexene/cyclohexane separation.

Chem Sci

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-Sen University Guangzhou 510275 China

The separation of C cyclic hydrocarbons (benzene, cyclohexene, and cyclohexane) is one of the most challenging chemical processes in the petrochemical industry. Herein, we design and synthesize a new SOD-topology metal azolate framework (MAF) with aperture gating behaviour controlled by C-Br⋯N halogen bonds, which exhibits distinct temperature- and guest-dependent adsorption behaviours for benzene/cyclohexene/cyclohexane. More importantly, the MAF enables the efficient purification of benzene from its binary and ternary mixtures (selectivity up to 113 ± 2; purity up to 98% +), which is the highest record for benzene/cyclohexane/cyclohexene separation to date.

View Article and Find Full Text PDF

Environmental cues sometimes have a direct impact on phage particle stability, as well as bacterial physiology and metabolism, having a profound effect on phage infection outcome. Here, we explore the impact of temperature on the interplay between phage (phiIPLA-RODI) and its host, . Our results show that phiIPLA-RODI is a more effective predator at room (25 °C) compared to body temperature (37 °C) against planktonic cultures of several strains with varying degrees of phage susceptibility.

View Article and Find Full Text PDF

The GSAG:Ce scintillator represents a promising and cost-effective alternative to the expensive GGAG:Ce. Recent studies have attributed its low light yield to the thermal quenching effect. In this study, we employed the strategy of adding an yttrium (Y) admixture to the GSAG matrix to increase the thermal activation energy of thermal quenching.

View Article and Find Full Text PDF

Effects of soil water on fungal community composition along elevational gradients on the northern slope of the Central Kunlun Mountains.

Front Microbiol

January 2025

Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Soil fungi are essential to ecosystem processes, yet their elevational distribution patterns and the ecological mechanisms shaping their communities remain poorly understood and actively debated, particularly in arid regions. Here, we investigated the diversity patterns and underlying mechanisms shaping soil fungal communities along an elevational gradient (1,707-3,548 m) on the northern slope of the Central Kunlun Mountains in northwest China. Results indicated that the dominant phyla identified across the seven elevational gradients were and , displaying a unimodal pattern and a U-shaped pattern in relative abundance, respectively.

View Article and Find Full Text PDF

The stability of proteins and small peptides depends on the way they interact with the surrounding water molecules. For small peptides, such as -helical polyalanine (polyALA), water molecules can weaken the intramolecular hydrogen-bonds (HB) formed between the peptide backbone O and NH groups which are responsible for the -helix structure. Here, we perform molecular dynamics simulations to study the hydration of polyALA, polyserine (polySER), and other homopolymer peptide -helices at different temperatures and pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!