Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364264 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036706 | PLOS |
Sci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
January 2025
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
Background: Pulsed-field ablation (PFA) is an innovative non-thermal method for arrhythmia treatment. The efficacy of various PFA configurations in relation to contact force (CF) has not been well-studied in vivo.
Objectives: This study evaluated the effect of CF on acute bipolar PFA lesions in both a vegetal and an in vivo porcine heart model.
Brain Sci
December 2024
Department of Education, "Roma Tre" University, 00185 Rome, Italy.
Background: The human sensorimotor system can naturally synchronize with environmental rhythms, such as light pulses or sound beats. Several studies showed that different styles and tempos of music, or other rhythmic stimuli, have an impact on physiological rhythms, including electrocortical brain activity, heart rate, and motor coordination. Such synchronization, also known as the "entrainment effect", has been identified as a crucial mechanism impacting cognitive, motor, and affective functioning.
View Article and Find Full Text PDFZhongguo Gu Shang
January 2025
Department of Thoracic Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan 430050, Hubei, China.
Objective: To investigate the clinical efficacy of thoracoscopic minimally invasive surgery with nickel-titanium shape memory alloy wrap bone plate versus rib periosteal internal fixation in patients with multiple rib fractures (MRF) and flail chest.
Methods: A retrospective analysis was performed on 100 patients with MRF and flail chest treated with thoracoscopic minimally invasive surgery and internal fixation with rib fracture preservation between January 2019 and December 2022, including 54 males and 46 females, aged from 20 to 65 years old, with an average age of (38.0±18.
Am J Emerg Med
January 2025
Minnesota Regional Poison Center, Department of Pharmacy, Hennepin Healthcare, Minneapolis, MN, USA; Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth Campus, Duluth, MN, USA. Electronic address:
Acute digoxin poisoning is increasingly uncommon in emergency medicine. Furthermore, controversy exists regarding indications for antidotal digoxin immune fab in acute poisoning. In healthy adults, the fab prescribing information recommends administration based on "known consumption of fatal doses of digoxin: ≥10mg," while many emergency medicine textbooks suggest fab administration be driven by clinical features or potassium concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!