Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels--smooth muscle and endothelial cells--and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373399PMC
http://dx.doi.org/10.1083/jcb.201110132DOI Listing

Publication Analysis

Top Keywords

lymphatic vessel
16
lymphatic
12
collecting lymphatic
12
lymphatic vessels
12
reelin signaling
8
smc recruitment
8
reelin
5
smooth muscle-endothelial
4
muscle-endothelial cell
4
cell communication
4

Similar Publications

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.

View Article and Find Full Text PDF

Adrenal lymphangioma: Case report and review of the literature.

Int J Surg Case Rep

December 2024

Retroperitoneal, Pelvic and Adrenal Unit, Department of General Surgery, British Hospital of Buenos Aires, Buenos Aires, Argentina. Electronic address:

Introduction And Importance: Lymphangiomas (LG) are a rare type of lesion of the lymphatic vessels. They predominantly occur in young patients, mostly female. Adrenal location represents 0.

View Article and Find Full Text PDF

Background: Meniere's disease (MD) is a disabling disease of the inner ear, having a substantial effect on a patient's quality of life. While various postulations regarding its aetiology exists, due to the difficulty with accessing inner ear tissue, there have been limited histological studies in patients with active MD.

Methods: Tissue was collected during labyrinthectomy from 8 patients with intractable MD who had failed medical therapy (22 samples), and 9 patients undergoing translabyrinthine resection of vestibular schwannoma (19 samples).

View Article and Find Full Text PDF

Background: Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRAS) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy.

View Article and Find Full Text PDF

Vascular endothelial growth factor receptor-3 (VEGFR-3) plays an indispensable role in lymphangiogenesis. Previous findings suggest that blocking the VEGFR-3 signaling pathway can inhibit lymph node metastasis effectively, thus reducing the incidence of distant metastasis. The development of new VEGFR-3-targeting drugs for early detection and effective treatments is, therefore, urgently required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!