Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins.

Methods Mol Biol

Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA.

Published: September 2012

The role of membrane proteins is critical for regulation of physiologic and pathologic cellular processes. Hence it is not surpassing that membrane proteins make ∼70% of contemporary drug targets. Quantitative profiling of membrane proteins using mass spectrometry (MS)-based proteomics is critical in a quest for disease biomarkers and novel cancer drugs. Post-digestion (18)O exchange is a simple and efficient method for differential (18)O/(16)O stable isotope labeling of two biologically distinct specimens, allowing relative quantitation of proteins in complex mixtures when coupled with shotgun MS-based proteomics. Due to minimal sample consumption and unrestricted peptide tagging, (18)O/(16)O stable isotope labeling is particularly suitable for amount-limited protein specimens typically encountered in membrane and clinical proteomics. This chapter describes a protocol that relies on shotgun proteomics for quantitative profiling of the detergent-insoluble membrane proteins isolated from HeLa cells, differentially transfected with plasmids expressing HIV Gag protein and its myristylation-defective N-terminal mutant. Whilst this protocol depicts solubilization of detergent-insoluble membrane proteins coupled with post-digestion (18)O labeling, it is amenable to any complex membrane protein mixture. Described approach relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (v/v) methanol followed by differential (18)O/(16)O labeling of protein digests in 20% (v/v) methanol buffer. After mixing, the differentially labeled peptides are fractionated using off-line strong cation exchange (SCX) followed by on-line reversed phase nanoflow reversed-phase liquid chromatography (nanoRPLC)-MS identification/quantiation of peptides/proteins. The use of methanol-based buffers in the context of the post-digestion (18)O exchange/labeling eliminates the need for detergents or chaotropes that interfere with LC separations and peptide ionization. Sample losses are minimized because solubilization, digestion, and stable isotope labeling are carried out in a single tube, avoiding any sample transfer or buffer exchange between these steps.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-885-6_15DOI Listing

Publication Analysis

Top Keywords

membrane proteins
28
post-digestion 18o
12
stable isotope
12
isotope labeling
12
membrane
9
shotgun proteomics
8
proteins
8
quantitative profiling
8
ms-based proteomics
8
differential 18o/16o
8

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

Introduction: Plasma phosphorylated tau (p-tau) biomarkers have improved Alzheimer's disease (AD) diagnosis, but data from diverse Asian populations are limited. This study evaluated plasma p-tau217 and p-tau181 levels in Korean and Taiwanese populations.

Methods: All participants (n = 270) underwent amyloid positron emission tomography (PET) and blood tests.

View Article and Find Full Text PDF

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

Genetic association analysis of lipid-lowering drug target genes in chronic kidney disease.

Front Endocrinol (Lausanne)

January 2025

Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning, China.

Objective: The impact of lipid-lowering medications on chronic kidney disease (CKD) remains a subject of debate. This Mendelian randomization (MR) study aims to elucidate the potential effects of lipid-lowering drug targets on CKD development.

Methods: We extracted 11 genetic variants encoding targets of lipid-lowering drugs from published genome-wide association study (GWAS) summary statistics, encompassing LDLR, HMGCR, PCSK9, NPC1L1, APOB, ABCG5/ABCG8, LPL, APOC3, ANGPTL3, and PPARA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!