Thorough investigations on indoor radon in Băiţa radon-prone area (Romania).

Sci Total Environ

Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Fântânele No. 30, 400294, Cluj-Napoca, Romania.

Published: August 2012

A comprehensive radon survey has been carried out in Băiţa radon-prone area, Transylvania, Romania, in 4 localities (Băiţa, Nucet, Fînaţe, and Cîmpani) situated in the vicinity of former Romanian uranium mines. Indoor radon concentrations have been measured in 1128 ground floor rooms and cellars of 303 family houses by using CR-39 diffusion type radon detectors. The annual average of indoor radon concentration for Băiţa area was found to be 241±178 Bq m(-3), which is about two times higher than the average value of 126 Bq m(-3), computed for Romania. About 28% of investigated houses exceed the reference level of radon gas in dwellings of 300 Bq m(-3). The indoor radon measurements on each house have been carried out in several rooms simultaneously with the aim of obtaining a more detailed picture on the exposure to radon in the studied area. An analysis on the variability of radon levels among floors (floor-to-floor variation) and rooms (room-to-room variation) and also the influence of factors like the presence of cellar or the age of the building is presented. The coefficient of variation (CV) within ground floor rooms of the same house (room-to-room variation) ranged between 0.9 and 120.8%, with an arithmetic mean of 46.2%, a large variability among rooms within surveyed dwellings being clearly identified. The mean radon concentration in bedrooms without cellar was higher than in bedrooms above the cellar, the difference being statistically significant (t test, one tail, p<0.001, n=82). For houses built during 1960-1970 an increasing trend for radon levels was observed, but overall there was no significant difference in indoor radon concentrations by age of dwelling (one-way ANOVA test, p>0.05).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.05.013DOI Listing

Publication Analysis

Top Keywords

indoor radon
16
radon
10
băiţa radon-prone
8
radon-prone area
8
ground floor
8
floor rooms
8
radon concentration
8
room-to-room variation
8
bedrooms cellar
8
rooms
5

Similar Publications

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Assessment of radon level and the associated radiological risk from soil samples of quarry area at Hakim Gara, Ethiopia.

Environ Monit Assess

December 2024

School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.

Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.

View Article and Find Full Text PDF

Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.

Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.

View Article and Find Full Text PDF

Indoor Radon Survey in 31 Provincial Capital Cities and Estimation of Lung Cancer Risk in Urban Areas of China.

Biomed Environ Sci

November 2024

Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.

Objective: We aimed to analyze the current indoor radon level and estimate the population risk of radon-induced lung cancer in urban areas of China.

Methods: Using the passive monitoring method, a new survey on indoor radon concentrations was conducted in 2,875 dwellings across 31 provincial capital cities in Chinese mainland from 2018 to 2023. The attributable risk of lung cancer induced by indoor radon exposure was estimated based on the risk assessment model.

View Article and Find Full Text PDF

In this study, the occupational radiation dose, radon gas, and non-ionizing radiation doses originating from electromagnetic fields (EMF) to which radiation workers are exposed were monitored and evaluated for 1 y. Using electronic personnel dosimeters (EPD), average daily radiation doses based on the number of patients and annual average effective dose results of radiation workers were obtained over a period of 1 y. Also, the annual effective dose and risk values were calculated for 8 h and 24 h by taking radon gas measurements at 2-mo intervals in the nuclear medicine department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!