Resolving biofilm infections: current therapy and drug discovery strategies.

Curr Drug Targets

Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Brisbane, 4072, Australia.

Published: October 2012

Biofilms formed by pathogenic bacteria present a serious threat to human health as the efficacy of standard antibiotic therapeutic regimens is compromised by reduced microbial susceptibility within the biofilm environment. The discovery of improved therapies for biofilm elimination requires an understanding of biofilm formation and dispersal, and the development of assays to specifically analyze these dynamic processes. This review will discuss biofilm screening strategies suitable for drug discovery efforts, especially chemical and biological approaches that specifically target biofilm destruction.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138945012803530251DOI Listing

Publication Analysis

Top Keywords

drug discovery
8
biofilm
5
resolving biofilm
4
biofilm infections
4
infections current
4
current therapy
4
therapy drug
4
discovery strategies
4
strategies biofilms
4
biofilms formed
4

Similar Publications

Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.

View Article and Find Full Text PDF

Regulation of autophagy by protein lipidation.

Adv Biotechnol (Singap)

September 2024

Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Autophagy is a conserved catabolic recycling pathway that can eliminate cytosolic materials to maintain homeostasis and organelle functions. Many studies over the past few decades have demonstrated that abnormal autophagy is associated with a variety of diseases. Protein lipidation plays an important role in the regulation of autophagy by affecting protein trafficking, localization, stability, interactions and signal transduction.

View Article and Find Full Text PDF

Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has added a new paradigm to our understanding of cholesterol homeostasis and lipid metabolism. Since its discovery, PCSK9 inhibitors have become a widely investigated therapeutic class for lipid management in cardiovascular diseases and hypercholesterolemia. Scientists have explored different approaches for PCSK9 inhibition, such as monoclonal antibodies (mAbs), gene silencing and gene editing techniques, vaccines, mimetic peptides, and small molecules.

View Article and Find Full Text PDF

From the leaves of , fourteen compounds were isolated and identified: D-mannitol (), a mixture of β-sitosterol () and stigmasterol (), α-amyrin (), betulin (), lupeol (), lupenone (), betulinic acid (), taraxerol (), 3β-(E)-coumaroyltaraxerol (), 3β-(Z)-coumaroyltaraxerol (), ursolic acid (), stigmasterol 3-O-β-D-glucoside (), and β-sitosterol 3-O-β-D-glucoside (). These compounds were analysed through NMR spectroscopy (both 1D and 2D) and by comparing them to previously published data. Compounds , , , and - have been identified from this species for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!