We have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10-10 000 cm(-1)), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, E(F), which in turn modified the Drude-like intraband absorption in the terahertz as well as the "2E(F) onset" for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl301496rDOI Listing

Publication Analysis

Top Keywords

terahertz infrared
12
infrared spectroscopy
8
large-area graphene
8
terahertz
5
spectroscopy gated
4
gated large-area
4
graphene
4
graphene fabricated
4
fabricated centimeter-size
4
centimeter-size single-layer
4

Similar Publications

Radar-Terahertz-Infrared Compatible Stealth Coaxial Silver Nanowire@Carbon Nano-cable Aerogel.

Angew Chem Int Ed Engl

January 2025

Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.

Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Antiferromagnetic semimetal terahertz photodetectors enhanced through weak localization.

Nat Commun

January 2025

State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.

Article Synopsis
  • The study explores the terahertz detection capabilities of the two-dimensional antiferromagnetic semimetal NbFeTe, highlighting its unique properties.
  • The interaction of antiferromagnetic moments and electron spins leads to a nonlinear increase in the material's responsivity as temperatures drop, facilitated by the use of asymmetric electrodes.
  • The NbFeTe₂/graphene heterojunction achieves impressive performance metrics, indicating its potential for high-speed imaging in terahertz applications.
View Article and Find Full Text PDF

"Raman plus X" dual-modal spectroscopy technology for food analysis: A review.

Compr Rev Food Sci Food Saf

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.

Raman spectroscopy, a nondestructive optical technique that provides detailed chemical information, has attracted growing interest in the food industry. Complementary spectroscopic methods, such as near-infrared (NIR) spectroscopy, nuclear magnetic resonance (NMR), terahertz (THz) spectroscopy, laser-induced breakdown spectroscopy (LIBS), and fluorescence spectroscopy (Flu), enhance Raman spectroscopy's capabilities in various applications. The integration of Raman with these techniques, termed "Raman plus X," has shown significant potential in agri-food analysis.

View Article and Find Full Text PDF

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!