We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364806PMC
http://dx.doi.org/10.1063/1.3661129DOI Listing

Publication Analysis

Top Keywords

particle trajectories
8
surface acoustic
8
acoustic wave
8
bead streams
8
manipulating particle
4
trajectories phase-control
4
phase-control surface
4
wave microfluidics
4
microfluidics 91 mhz
4
91 mhz surface
4

Similar Publications

Squatting is a fundamental and crucial movement, often employed as a basic test during robot commissioning, and it plays a significant role in some service industries and in cases when robots perform high-dynamic movements like jumping. Therefore, achieving continuous and precise squatting actions is of great importance for the future development of humanoid robots. In this paper, we apply three-particle model predictive control (TP-MPC) combined with weight-based whole-body control (WBC) to a humanoid robot.

View Article and Find Full Text PDF

Aerosol particles released from grit chambers of nine urban wastewater treatment plants in typical regions: Fugitive characteristics, quantitative drivers, and generation process.

Water Res

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

The flow through the grit chamber is non-biochemically treated wastewater, which contains microorganisms mainly from the source of wastewater generation. There are limited reports on aerosol particles generated by grit chambers compared with those produced by biochemical treatment tanks. This study analyzed the fugitive characteristics of aerosol particles produced in grit chambers at nine wastewater treatment plants in three regions of China.

View Article and Find Full Text PDF

This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.

View Article and Find Full Text PDF

Single-particle tracking reveals heterogeneous PIEZO1 diffusion.

Biophys J

January 2025

Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:

The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.

View Article and Find Full Text PDF

We examine the collective motion in computational models of a two-dimensional dusty plasma crystal and a charged colloidal suspension as they approach their respective melting transitions. To unambiguously identify rearrangement events in the crystal, we map the trajectory of configurations from an equilibrium molecular dynamics simulation to the corresponding sequence of configurations of local potential energy minima ("inherent structures"). This inherent structure (IS) trajectory eliminates the ambiguity that arises from localized vibrational motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!