Methionine sulfoxide reductase A is an essential enzyme in the antioxidant system which scavenges reactive oxygen species through cyclic oxidation and reduction of methionine and methionine sulfoxide. The cytosolic form of the enzyme is myristoylated, but it is not known to translocate to membranes, and the function of myristoylation is not established. We compared the biochemical and biophysical properties of myristoylated and nonmyristoylated mouse methionine sulfoxide reductase A. These were almost identical for both forms of the enzyme, except that the myristoylated form reduced methionine sulfoxide in protein much faster than the nonmyristoylated form. We determined the solution structure of the myristoylated protein and found that the myristoyl group lies in a relatively surface exposed "myristoyl nest." We propose that this structure functions to enhance protein-protein interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408158PMC
http://dx.doi.org/10.1074/jbc.M112.368936DOI Listing

Publication Analysis

Top Keywords

methionine sulfoxide
20
sulfoxide reductase
12
solution structure
8
enzyme myristoylated
8
methionine
6
myristoylated
5
sulfoxide
5
characterization solution
4
structure mouse
4
mouse myristoylated
4

Similar Publications

25.91%-Efficiency and Durable Inverted Perovskite Solar Cells Enabled by a Multifunctional Molecule Mediated Precursor Engineering.

Small

December 2024

School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.

The stability of the precursor is essential for producing high-quality perovskite films with minimal non-radiative recombination. In this study, methionine sulfoxide (MTSO), which features multiple electron-donation sites, is strategically chosen as a precursor stabilizer and crystal growth mediator for inverted perovskite solar cells (PSCs). MTSO stabilizes the precursor by inhibiting the oxidation of iodide ions and passivates charged traps through coordination and hydrogen bonding interactions.

View Article and Find Full Text PDF

Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato.

BMC Genomics

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Background: As two of the most impactful abiotic stresses, salt and drought strongly affect tomato growth and development, especially at the seedling stage. However, dissection of the genetic basis underlying salt/drought tolerance at seedling stage in tomato remains limited in scope.

Results: Here, we reported an analysis of major quantitative trait locus (QTL) and potential causal genetic variations in seedling stage salt/drought tolerance in recombinant inbred lines (n = 201) of S.

View Article and Find Full Text PDF

Polyphenols are well-known for their antioxidant properties, but their prooxidative activity remain less understood. This study quantitatively examined the formation of hydrogen peroxide (HO) during the autooxidation of nine different polyphenols in model systems, investigating how it impacts protein oxidation and protein-polyphenol covalent adduct formation. Polyphenols (4 mM) generated HO in the range of 0.

View Article and Find Full Text PDF

Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry.

Pathogens

November 2024

Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.

Article Synopsis
  • Chronic wasting disease (CWD) is a prion disease that impacts both wild and farmed elk, where infectious proteins cause normal proteins to misfold.
  • A study used mass spectrometry to analyze prion proteins from elk inoculated with CWD, focusing on various peptides to measure prion quantity and composition.
  • Results indicated differing amounts of prion proteins in the elk's brain tissue and highlighted the presence of methionine oxidation, demonstrating how mass spectrometry can help identify prion strains on a molecular level.
View Article and Find Full Text PDF

MsrB1 is a thiol-dependent enzyme that reduces protein methionine--sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!