The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser(19) and Thr(18) was achieved by treatment with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca(2+), which induced stoichiometric thiophosphorylation at Ser(19), followed by microcystin (phosphatase inhibitor) in the absence of Ca(2+), which induced phosphorylation at Thr(18). Phosphorylation at Thr(18) had no effect on steady-state force induced by Ser(19) thiophosphorylation. However, phosphorylation of Ser(19) or both Ser(19) and Thr(18) to comparable stoichiometries (0.5 mol of P(i)/mol of LC(20)) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t(½) values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser(19)) and diphosphorylated LC(20), respectively. We conclude that phosphorylation at Thr(18) decreases the rates of LC(20) dephosphorylation and smooth muscle relaxation compared with LC(20) phosphorylated exclusively at Ser(19). These effects of LC(20) diphosphorylation, combined with increased Ser(19) phosphorylation (Ca(2+)-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397833 | PMC |
http://dx.doi.org/10.1074/jbc.M112.371609 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFJ Clin Med
January 2025
Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, Meharry Medical College, School of Medicine, Nashville, TN 37208, USA.
Alzheimer's disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).
View Article and Find Full Text PDFBiomolecules
December 2024
Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China.
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of frog. Senegalin-2 relaxed rat bladder smooth muscle (EC 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!