The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.ip068387DOI Listing

Publication Analysis

Top Keywords

laser microscope
8
laser ablation
8
ablation
6
cells
5
setup functional
4
functional cell
4
cell ablation
4
ablation lasers
4
lasers coupling
4
laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!