Failing single ventricle physiology represents an ongoing challenge in mechanical assist device development, requiring pressure augmentation in the cavopulmonary circuit, reduction of systemic venous pressure, and increased cardiac output to achieve hemodynamic stabilization. To meet these requirements, we are developing a percutaneously-placed, axial flow blood pump to support ailing single ventricle physiology in adolescents and adults. We have modified the outer cage of the device to serve as both a protective and functional design component. This study examined the performance of 3 cage geometries with varying directions of filament twist using numerical simulations and hydraulic experiments. All 3 cage and pump models performed in acceptable ranges to support Fontan patients. The cage design employing filaments that are twisted in the opposite direction to the impeller blades and in the direction of the diffuser blades (against-with) demonstrated superior performance by generating a pressure rise range of 5-38 mmHg of flow rates of 0.5-6 l/min at rotational speeds of 5000-7000 rpm. The blood damage indices for all of the cages were found to be well below 2%, and the scalar stress levels were below 200 Pa. This study represents ongoing progress in the development of the impeller and cage assembly. Validation of the results will continue in experiments with blood bag evaluation as well as by particle image velocimetry measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5301/ijao.5000105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!