Hormone-resistant (HR) prostate cancers are highly aggressive and respond poorly to treatment. A better understanding of the molecular mechanisms involved in HR should lead to more rational approaches to therapy. The role of IL-6/STAT3 signaling in the transition of HR with aggressive tumor behavior and its possible link with myeloid-derived suppressor cells (MDSCs) were identified. In the present study, murine prostate cancer cell line (TRAMP-C1) and a hormone-resistant cell sub-line (TRAMP-HR) were used. Changes in tumor growth, invasion ability, and the responsible pathway were investigated in vitro and in vivo. We also examined the role of IL-6 in HR tumor progression and the recruitment of MDSCs. As seen in both in vitro and in vivo experiments, HR had aggressive tumor growth compared to TRAMP-C1. From mRNA and protein analysis, a higher expression of IL-6 associated with a more activated STAT3 was noted in HR tumor. When IL-6 signaling in prostate cancer was blocked, aggressive tumor behavior could be overcome. The underlying changes included decreased cell proliferation, less epithelial-mesenchymal transition, and decreased STAT3 activation. In addition to tumor progression, circulating IL-6 levels were significantly correlated with MDSC recruitment in vivo. Inhibition of IL-6 abrogated the recruitment of MDSCs in tumor- bearing mice, associated with slower tumor growth and attenuated angiogenesis. In conclusion, altered IL-6/STAT3 signaling is crucial in HR transition, aggressive behavior, and MDSC recruitment. These findings provide evidence for therapeutically targeting IL-6 signaling in prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-012-0916-xDOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
aggressive tumor
12
tumor growth
12
hormone-resistant prostate
8
myeloid-derived suppressor
8
suppressor cells
8
il-6/stat3 signaling
8
transition aggressive
8
tumor
8
tumor behavior
8

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

Background: Most cancer survivors have multiple cardiovascular risk factors, increasing their risk of poor cardiovascular and cancer outcomes. The Automated Heart-Health Assessment (AH-HA) tool is a novel electronic health record clinical decision support tool based on the American Heart Association's Life's Simple 7 cardiovascular health (CVH) metrics to promote CVH assessment and discussion in outpatient oncology. Before proceeding to future implementation trials, it is critical to establish the acceptability of the tool among providers and survivors.

View Article and Find Full Text PDF

Purpose: Artificially Intelligent (AI) chatbots have the potential to produce information to support shared prostate cancer (PrCA) decision-making. Therefore, our purpose was to evaluate and compare the accuracy, completeness, readability, and credibility of responses from standard and advanced versions of popular chatbots: ChatGPT-3.5, ChatGPT-4.

View Article and Find Full Text PDF

Design and Discovery of Preclinical Candidate LYG-409 as a Highly Potent and Selective GSPT1 Molecular Glue Degraders.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.

Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.

View Article and Find Full Text PDF

Purpose: Actinium-225 labeled prostate-specific membrane antigen (PSMA) targeted radionuclide therapy has emerged as a potential treatment option in the management of men with metastatic castrate-resistant prostate cancer (mCRPC). This study investigated molecular imaging-derived parameters and compared imaging response of lesions categorized by tumor site.

Methods: Men with mCRPC treated with [225Ac]Ac-J591 from 2017 to 2022 at our center on two prospective trials (NCT03276572 and NCT04506567) with pre- and post-treatment [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET) imaging studies available were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!