Holographic generation of a class of nondiffracting fields with optimum efficiency.

Opt Lett

Instituto Nacional de Astrofísica, Óptica y Electrónica, Apartado Postal 51 y 216, Puebla PUE 72000, México.

Published: June 2012

We discuss the accurate generation of complex optical fields using phase holograms that provide the optimum diffraction efficiency. In each considered case, the phase modulation of the employed hologram is identical to the phase of the desired optical field. We show that periodic and quasiperiodic nondiffracting optical fields, mathematically obtained through the superposition of multiple plane waves, can be generated with high fidelity using this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.002154DOI Listing

Publication Analysis

Top Keywords

optical fields
8
holographic generation
4
generation class
4
class nondiffracting
4
nondiffracting fields
4
fields optimum
4
optimum efficiency
4
efficiency discuss
4
discuss accurate
4
accurate generation
4

Similar Publications

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with neuroinflammation and heightened production of reactive oxygen species (ROS) in the brain from overactive NADPH Oxidase 2 (NOX2). The current study examines whether administration of a novel, brain-penetrant NOX2 inhibitor (CPP11G & CPP11H) reduces amyloid plaque load and improves AD-associated vascular dysfunction in a male APP-PS1 mouse model of AD.

Method: Intraperitoneal injections of CPP11G (n = 1) or CPP11H (n = 2) three times per week began at 9-10 months of age in the treatment APP-PS1 group (15 mg/kg).

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vanderbilt University Medical Center, Nashville, TN, USA.

Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.

View Article and Find Full Text PDF

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Background And Objective: Diagnosis of pathology in the mediastinum has proven quite challenging, given the wide variability of both benign and malignant diseases that affect a diverse array of structures. This complexity has led to the development of many different non-invasive and invasive diagnostic modalities. Historically, diagnosis of the mediastinum has relied on different imaging modalities such as chest X-ray, computed tomography (CT), magnetic resonance imaging, and positron emission topography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!