Optimal crystal geometry and orientation in electric field sensing using electro-optic sensors.

Opt Lett

Naval Research Laboratory, Washington, District of Columbia 20375, USA.

Published: June 2012

AI Article Synopsis

  • Electro-optic (EO) crystals are chosen for electric field measurements based on their EO coefficients and dielectric constants, but traditional metrics often mispredict their sensitivity.
  • Depolarization effects, usually overlooked, can significantly boost the responsiveness of EO materials, influenced by the shape and orientation of the crystals.
  • For achieving maximum sensitivity, these depolarization effects are particularly effective in longitudinal EO sensors, leading to an optical modulation depth that increases with the square of the crystal length.

Article Abstract

For optimal sensitivity in electric field measurements, electro-optic (EO) crystals are typically selected based on their EO coefficients and dielectric constants. However, the conventional figure of merit yields sensitivity predictions regarding EO materials that are inconsistent with experimental data. In this Letter, we demonstrate that depolarization effects, which are often ignored, can dramatically enhance responsivity depending on the shape and orientation of the EO crystal. For optimal sensitivity, these effects are best exploited in longitudinal EO sensors, where they yield an optical modulation depth that increases quadratically with crystal length.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.002124DOI Listing

Publication Analysis

Top Keywords

electric field
8
optimal sensitivity
8
optimal crystal
4
crystal geometry
4
geometry orientation
4
orientation electric
4
field sensing
4
sensing electro-optic
4
electro-optic sensors
4
sensors optimal
4

Similar Publications

In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.

View Article and Find Full Text PDF

Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings.

View Article and Find Full Text PDF

An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!