Coupling plasmons and dyakonons.

Opt Lett

ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain.

Published: June 2012

AI Article Synopsis

  • The research explores how plasmons (waves of electrons) and Dyakonov surface waves (surface waves that travel along the boundary of materials) interact at the interfaces of layered structures made from isotropic-birefringent metals.
  • By selecting the right birefringence, refractive index of the isotropic medium, and light propagation angle relative to the crystal's optical axis, efficient coupling between these waves can be achieved.
  • In scenarios involving low-loss metals, the study predicts coupling efficiencies can reach up to 90%, indicating a strong interaction between the waves.

Article Abstract

We study the coupling of plasmons and Dyakonov surface waves propagating at the interfaces between isotropic-birefringent-metal layered structures. Efficient coupling is shown to occur with a proper choice of the crystal birefringence, the refractive index of the isotropic medium, and the light propagation direction relative to the crystal optical axis. In the case of low-loss metals, coupling efficiencies as high as 90% are predicted to be possible.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.001983DOI Listing

Publication Analysis

Top Keywords

coupling plasmons
8
coupling
4
plasmons dyakonons
4
dyakonons study
4
study coupling
4
plasmons dyakonov
4
dyakonov surface
4
surface waves
4
waves propagating
4
propagating interfaces
4

Similar Publications

Manipulating π-π Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers.

Phys Rev Lett

December 2024

Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.

Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.

View Article and Find Full Text PDF

Tunable Chiroptical Activity in Branched Ag@Au Nanoparticles with Molecular Chirality and Geometric Chirality.

Small

December 2024

State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

Chiral plasmonic nanomaterials have attracted significant awareness due to their applications in chiral catalysis, biosensing, photonics, and separation. Constructing plasmonic core-shell nanomaterials with geometric chirality and desirable optical chirality is a crucial yet challenging task for extending the range of chiral plasmonic nanomaterials. Here, a two-step method is reported for the synthesis of Gold (Au) branches wrapped silver (Ag) nanocubes (L/DBAg@Au) with strong and tunable circular dichroism (CD) signals under the regulation of L/D-cysteine (L/D-Cys).

View Article and Find Full Text PDF

Developing Ag-based surface-enhanced Raman spectroscopy (SERS) sensors for detecting Hg(II) has garnered significant research interest due to their unparalleled selectivity, which is brought by the specific Ag-Hg amalgamation reaction. However, existing sensors perform unsatisfactorily in the trace detection of Hg(II) because the low concentration of Hg(II) does not have the redox potential sufficient to amalgamate with Ag. To address this challenge, a plasmonic MOF SERS sensor is developed, nanoetched Ag@UiO-68-SMe, by integrating the enormous Raman enhancement effects of nanoetched Ag with the selective enrichment function of UiO-68-SMe into single entity.

View Article and Find Full Text PDF

Integrating specific immune recognition, a desirable extinction coefficient, and conspicuous photothermal conversion ability into a single-immune probe to enhance the analysis performance represents an appealing yet significantly challenging task. Herein, by delicately manipulating the geometry of plasmonic nanoparticles from spherical to spiky, precise engineering approach-based spiky Au nanocubes (S-AuNCs) are employed to address this challenge, which fully exploits the plasmon resonance absorption-induced photothermal effect. The finite difference time domain (FDTD) method was employed to computationally simulate the electromagnetic and thermal fields while assessing the feasibility of regulating plasmon resonance for enhanced photothermal absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: