We report on a new calibration technique that permits the accurate extraction of sample Jones matrix and hence fast-axis orientation by using fiber-based polarization-sensitive optical coherence tomography (PS-OCT) that is completely based on non-polarization-maintaining fiber such as SMF-28. In this technique, two quarter-wave plates (QWPs) are used to completely specify the parameters of the system fibers in the sample arm so that the Jones matrix of the sample can be determined directly. The device was validated on measurements of a QWP and an equine tendon sample by a single-mode fiber-based swept-source PS-OCT system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.37.001931 | DOI Listing |
Biomed Opt Express
July 2024
Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
Polarization-sensitive optical coherence tomography (PS-OCT) is a functional imaging tool for measuring tissue birefringence characteristics. It has been proposed as a potentially non-invasive technique for evaluating skin burns. However, the PS-OCT modality usually suffers from high system complexity and relatively low tissue-specific contrast, which makes assessing the extent of burns in skin tissue difficult.
View Article and Find Full Text PDFOptical-fiber-based polarization scramblers can reduce the impact of polarization sensitive performance of various optical fiber systems. Here, we propose a simple and efficient polarization scrambler based on an all-optical Mach-Zehnder structure by combining a polarization beam splitter and an amplified fiber ring. To totally decoherence one polarization split beam, a fiber ring together with an amplifier is incorporated.
View Article and Find Full Text PDFBiomed Opt Express
May 2024
Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, USA.
We present a fully integrated depth-resolved all fiber-based polarization sensitive optical coherence tomography (PSOCT). In contrast to conventional fiber-based PSOCT systems, which require additional modules to generate two or more input polarization states, or a pre-adjustment procedure to generate a circularly polarized light, the proposed all-fiber PSOCT system can provide depth-resolved birefringent imaging using an arbitrary single input polarization state. Utilizing the discrete differential geometry (DDG)-based polarization state tracing (PST) method, combined with several geometric rotations and transformations in the Stokes space, two problems induced by the optical fibers can be mitigated: 1) The change in the polarization state introduced by the optical fibers can be effectively compensated using a calibration target at the distal end of the probe, and the computations of the local axis orientation and local phase retardation can be achieved with a single arbitrary input polarization state, eliminating the need for a pre-defined input polarization state, allowing a flexible system design and user-friendly experimental procedure; 2) The polarization mode dispersion (PMD) induced by the optical fibers can be compensated digitally without the requirement of additional input polarization states, providing an accurate PSOCT imaging result.
View Article and Find Full Text PDFTo realize the high sensitivity polarization sensitive optical coherence tomography (PS-OCT) imaging, a fiber-based full-range depth-encoded swept source PS-OCT (SS-PS-OCT) method is proposed. The two OCT images corresponding to the orthogonal polarized input light are located on the high sensitivity imaging region of the opposite sides relative to the zero optical path difference position. The full-range OCT images can be obtained by implementing the spatial phase modulation in the reference arm.
View Article and Find Full Text PDFWe present computational refocusing in polarization-sensitive optical coherence tomography (PS-OCT) to improve spatial resolution in the calculated polarimetric parameters and extend the depth-of-field in phase-unstable, fiber-based PS-OCT systems. To achieve this, we successfully adapted short A-line range phase-stability adaptive optics (SHARP), a computational aberration correction technique compatible with phase-unstable systems, into a Stokes-based PS-OCT system with inter-A-line polarization modulation. Together with the spectral binning technique to mitigate system-induced chromatic polarization effects, we show that computational refocusing improves image quality in tissue polarimetry of swine eye anterior segment ex vivo with PS-OCT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!