Cortical dynamics of human scalp EEG origins in a visually guided motor execution.

Neuroimage

Graduate School of Informatics, Kyoto University, Kyoto, Japan.

Published: September 2012

The EEG mu rhythm is often used as an index of activation in the sensorimotor cortex. However, the blur caused by volume conduction makes it difficult to identify the exact origin of the EEG rhythm in the brain using only the human scalp EEG. In this study, simultaneous fMRI and EEG measurements were performed during a visually guided motor execution task in order to investigate whether the mu rhythm in the scalp EEG is an indication of the activity in the sensorimotor cortex. In addition, a new method was proposed for reconstruction of the cortical EEG activity through the fusion of fMRI and EEG data. A suppression of mu rhythm appeared around the lateral central electrode sites, just above the sensorimotor cortex, in association with the activity in that region. During a visually guided motor execution task, the alpha rhythms at the occipital electrode sites and the alpha rhythm at the central electrode sites also showed a correlation with the fMRI signal in the occipital and the supplementary motor cortices, respectively. This method allows the investigation of the scalp EEG origin with the spatial precision of fMRI, while retaining dynamic properties of the cortex with the temporal precision of EEG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2012.05.072DOI Listing

Publication Analysis

Top Keywords

scalp eeg
16
visually guided
12
guided motor
12
motor execution
12
sensorimotor cortex
12
electrode sites
12
eeg
10
human scalp
8
eeg rhythm
8
fmri eeg
8

Similar Publications

Unlabelled: While visual working memory (WM) is strongly associated with reductions in occipitoparietal 8-12 Hz alpha power, the role of 4-7 Hz frontal midline theta power is less clear, with both increases and decreases widely reported. Here, we test the hypothesis that this theta paradox can be explained by non-oscillatory, aperiodic neural activity dynamics. Because traditional time-frequency analyses of electroencephalopgraphy (EEG) data conflate oscillations and aperiodic activity, event-related changes in aperiodic activity can manifest as task-related changes in apparent oscillations, even when none are present.

View Article and Find Full Text PDF

The viewpoint that unitization provides a possibility of increasing the contribution of familiarity to associative memory has been widely accepted, but its effects on associative memory and recollection remain controversial. The current study aims to explain these mixed results by considering a potential moderator: changes in the level of unitization from encoding to retrieval phases. During the encoding phase, participants learned the related and unrelated picture pairs (i.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.

View Article and Find Full Text PDF

Does the stop-signal P3 reflect inhibitory control?

Cortex

December 2024

Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA. Electronic address:

The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping.

View Article and Find Full Text PDF

The brain prioritizes the basic level of object category abstraction.

Sci Rep

January 2025

Bates College Program in Neuroscience, Bates College, Lewiston, ME, USA.

Article Synopsis
  • Human observers tend to name objects using a mid-level of specificity called the basic level, despite the existence of multiple descriptive levels (e.g., "parka" vs. "clothing").
  • In a study, 1080 objects were shown while researchers recorded EEG to understand how quickly and dynamically the brain retrieves information about these object categories.
  • The findings revealed that the brain utilizes basic-level category information rapidly (starting around 50 ms after seeing an object) and that the processing of different task demands becomes apparent between 200-300 ms after the object is presented.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!