The presence of metabotropic glutamate receptors (mGluRs) of group II modulating glycine exocytosis from glycinergic nerve endings of mouse spinal cord was investigated. Purified synaptosomes were selectively prelabeled with [(3)H]glycine through the neuronal transporter GlyT2 and subsequently depolarized by superfusion with 12 mM KCl. The selective mGluR2/3 agonist LY379268 inhibited the K(+)-evoked overflow of [(3)H]glycine in a concentration-dependent manner (EC(50) about 0.2 nM). The effect of LY379268 was prevented by the selective mGluR2/3 antagonist LY341495 (IC(50) about 1 nM). N-acetylaspartylglutamate (NAAG) inhibited [(3)H]glycine overflow with extraordinary potency (EC(50) about 50 fmol). In contrast, glutamate was ineffective up to 0.1 nM, excluding that glutamate contamination of commercial NAAG samples is responsible for the reported activity of NAAG at mGluR3. LY341495 antagonized the NAAG inhibition of [(3)H]glycine release. The effect of a combination of maximally effective concentrations of LY379268 and NAAG exhibited no additivity. The non-hydrolysable NAAG analogue N-acetylaspartyl-β-linked glutamate (β-NAAG) antagonized NAAG and LY379268. In conclusion, our results show that glycinergic nerve endings in spinal cord are endowed with group II mGluRs mediating inhibition of glycine exocytosis. NAAG can activate these presynaptic receptors with extremely high affinity and with characteristics compatible with the reported mGluR3 pharmacology. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2012.05.030 | DOI Listing |
Sci Bull (Beijing)
December 2024
Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.
View Article and Find Full Text PDFNeuroimage
January 2025
Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.
View Article and Find Full Text PDFFront Neurol
November 2024
Department of Anesthesiology, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: Common side effect of Herpes Zoster, postherpetic neuralgia (PHN), causes persistent pain that seriously affects quality of life. Lack of dependable biomarkers makes the clinical diagnosis and treatment of PHN difficult, so complicating the assessment of therapeutic efficacy. Blood metabolites are becoming more and more well known as significant disease markers.
View Article and Find Full Text PDFACS Chem Neurosci
September 2024
Collage of Education for Pure Sciences, Tikrit University, Tikrit 34001, Iraq.
Glutamate carboxypeptidase II (GCPII), a metallopeptidase, is a recently identified pharmacologically targeted protein that is predominantly expressed in the human central nervous system, where it degrades the most abundant neuropeptide in the brain, -acetyl aspartate glutamate, releasing free glutamate. Dysregulated glutamate release is associated with numerous neurological disorders and brain inflammation. The present study was designed to evaluate the activity of GCPII in 60 serum samples from patients with leukodystrophy and 30 samples from a control group with an age of less than 10 years.
View Article and Find Full Text PDFNeurochem Int
October 2024
Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. Electronic address:
Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!