Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2012.05.005DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
oxide synthase
12
hearing disorders
8
nitric
6
oxide
5
nitric oxide--a
4
oxide--a versatile
4
versatile key
4
key player
4
player cochlear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!