We have isolated cells of unculturable radiolarians from marine coastal waters. Individual cells were subjected to single cell whole genome amplification (SCWGA) and gene-targeted PCR. Using this approach we recover a surprisingly large diversity of sequences related to the enigmatic marine alveolate groups 1 and 2 (MALV I and MALV II) that most likely represent intracellular symbionts or parasites of the radiolarian cells. 18S rDNA phylogeny of the MALV sequences reveals 4 distinct clades of radiolarian associates here named Radiolarian Associated Sequences (RAS) 1-4. One clade of both phaeodarian and radiolarian associates and one clade of only phaeodarian associates are also identified. The MALV sequences cluster according to host type, i.e. sequences from associates identified in radiolarians, fish, copepods, ciliates or dinoflagellates are not intermixed but separated into distinct clades. This implies several independent colonizations of host lineages and links a large diversity of MALV to radiolarian-associated species. This demonstrates that radiolarians may be an important reservoir for MALV, making them a key group for understanding the impact of intracellular symbionts on the marine ecosystem. This study shows that applying SCWGA on unculturable cells is a promising approach to study the vast diversity and interactions of intracellular eukaryote organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.protis.2012.04.004 | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Data
December 2024
Department of Mathematics, Texas A&M University, College Station, TX, 77843, USA.
The northern Gulf of Mexico (nGoM) receives water from over 50 rivers which are highly influenced by humans and include the largest river in the United States, the Mississippi River. To support large-scale data-driven research centered on the dynamic river-ocean system in the region, this study consolidated hydrogeochemical river and ocean data from across the nGoM. In particular, we harmonized 35 chemical solute parameters from 54 rivers and incorporated river discharge data to derive daily solute concentration and flux estimates throughout the nGoM.
View Article and Find Full Text PDFNat Commun
December 2024
AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.
Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.
View Article and Find Full Text PDFNat Commun
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.
Highly mutable pathogens generate viral diversity that impacts virulence, transmissibility, treatment, and thwarts acquired immunity. We previously described C19-SPAR-Seq, a high-throughput, next-generation sequencing platform to detect SARS-CoV-2 that we here deployed to systematically profile variant dynamics of SARS-CoV-2 for over 3 years in a large, North American urban environment (Toronto, Canada). Sequencing of the ACE2 receptor binding motif and polybasic furin cleavage site of the Spike gene in over 70,000 patients revealed that population sweeps of canonical variants of concern (VOCs) occurred in repeating wavelets.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!