Effect of pre-incubation conditions on growth and survival of Staphylococcus aureus in sliced cooked chicken breast.

Meat Sci

Department of Food Science and Technology, University of Cordoba, Campus of Rabanales, International Campus of Excellence in the AgriFood Sector (ceiA3), Darwin building-14014, Spain.

Published: December 2012

In this work, the effect of pre-incubation conditions (temperature: 10, 15, 37 °C; pH 5.5, 6.5 and water activity, a(w): 0.997, 0.960) was evaluated on the subsequent growth, survival and enterotoxin production (SE) of Staphylococcus aureus in cooked chicken breast incubated at 10 and 20 °C. Results showed the ability of S. aureus to survive at 10 °C when pre-incubated at low a(w) (0.960) what could constitute a food risk if osmotic stressed cells of S. aureus which form biofilms survive on dried surfaces, and they are transferred to cooked meat products by cross-contamination. Regarding growth at 20 °C, cells pre-incubated at pH 5.5 and a(w) 0.960 had a longer lag phase and a slower maximum growth rate. On the contrary, it was highlighted that pre-incubation at optimal conditions (37 °C/pH 6.5/a(w) 0.997) produced a better adaptation and a faster growth in meat products what would lead to a higher SE production. These findings can support the adoption of management strategies and preventive measures in food industries leading to avoid growth and SE production in meat products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2012.05.003DOI Listing

Publication Analysis

Top Keywords

meat products
12
pre-incubation conditions
8
growth survival
8
staphylococcus aureus
8
cooked chicken
8
chicken breast
8
growth
6
conditions growth
4
survival staphylococcus
4
aureus
4

Similar Publications

In this study, an integrated approach combining UHPLC-HRMS, H NMR spectroscopy, and sensory analysis unveiled the unique lipid fingerprint of long-ripened Protected Designation of Origin (PDO) Coppa Piacentina. Lipidomic profiling revealed significant alterations in lipid classes, including triacylglycerols, sphingolipids, and their oxidation products, which likely contribute to the distinctive flavor, texture, and nutritional properties of this traditional Italian product. UHPLC-HRMS analysis identified various lipid species, highlighting dynamic changes occurring throughout the 240-day ripening process.

View Article and Find Full Text PDF

The prevalence of foodborne diseases has raised concerns due to the potential transmission of zoonotic bacterial pathogens through meat products. The objective of this study was to determine the occurrence and antimicrobial resistance (AMR) profiles of pathogenic bacteria in cooked donkey meat products from Beijing. Twenty-one cooked donkey meat samples were collected from different delis, subjected to homogenization, and analyzed for bacterial contamination.

View Article and Find Full Text PDF

Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage.

View Article and Find Full Text PDF

Peptidomic Analysis Reveals Temperature-Dependent Proteolysis in Rainbow Trout () Meat During Sous-Vide Cooking.

Proteomes

November 2024

Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan.

Sous vide, a cooking method that involves vacuum-sealed fish at low temperatures, yields a uniquely tender, easily flaked texture. Previous research on sous-vide tenderization has focused on thermal protein denaturation. On the other hand, the contribution of proteases, activated at low temperatures in fish meat, has been suggested.

View Article and Find Full Text PDF

Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!