Regioselective synthesis of cellulose ester homopolymers.

Biomacromolecules

Department of Sustainable Biomaterials, Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States.

Published: July 2012

Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the synthesis of homopolymers of particular regioselectively substituted anhydroglucose esters is of critical importance to allow us to determine the analytical characteristics of such homopolymers, their structure-property relationships, and to obtain guidance that may ultimately enable identification and synthesis of cellulose derivatives with superior properties for various applications. We report here a new, general synthesis of both cellulose-2,6-O-diesters and cellulose-2,6-A-O-3-B-O-triesters with a high degree of regioselectivity, employing 3-O-allylcellulose as a key protected precursor. 3-O-Allylcellulose was identified as a protected intermediate with high potential for the synthesis of these derivatives with the aid of molecular modeling of corresponding glucose analogs. We report also the first analytical and structure property studies of these regioselectively substituted cellulose esters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm3006209DOI Listing

Publication Analysis

Top Keywords

synthesis cellulose
12
regioselective synthesis
8
cellulose ester
8
cellulose esters
8
regioselectively substituted
8
cellulose
6
synthesis
5
ester homopolymers
4
homopolymers regioselective
4
esters extremely
4

Similar Publications

The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.

View Article and Find Full Text PDF

Elucidating the mechanism behind the significant changes in photoluminescence behavior after powder compression into a tablet.

Phys Chem Chem Phys

January 2025

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.

Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.

View Article and Find Full Text PDF

Grapes are prone to softening, which limits their shelf life and suitability for long-distance transport. This study explored the molecular mechanisms underlying the effects of the chemical preservatives gibberellin (GA) and the nitric oxide donor sodium nitroprusside (SNP) on grape firmness. Enhancing grape quality, prolonging shelf life, and extending market supply were key objectives.

View Article and Find Full Text PDF

Cellulose Based Nano-Scaffolds for Targeted Cancer Therapies: Current Status and Future Perspective.

Int J Nanomedicine

January 2025

Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.

In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!