It is well known that dimethyl sulphoxide (DMSO) increases membrane permeability, which makes it widely used as a vehicle to facilitate drug delivery across biological membranes. However, the mechanism of how DMSO increases membrane permeability has not been well understood. Recently, molecular dynamics simulations have demonstrated that DMSO can induce water pores in biological membranes, but no direct experimental evidence is so far available to prove the simulation result. Using FluxOR Tl⁺ influx assay and intracellular Ca²⁺ imaging technique, we studied the effect of DMSO on Tl⁺ and Ca²⁺ permeation across cell membranes. Upon application of DMSO on CHO-K1 cell line, Tl⁺ influx was transiently increased in a dose-dependent manner. The increase in Tl⁺ permeability induced by DMSO was not changed in the presence of blockers for K⁺ channel and Na⁺-K⁺ ATPase, suggesting that Tl⁺ permeates through transient water pores induced by DMSO to enter into the cell. In addition, Ca²⁺ permeability was significantly increased upon application of DMSO, indicating that the transient water pores induced by DMSO were non-selective pores. Furthermore, similar results could be obtained from RAW264.7 macrophage cell line. Therefore, this study provided experimental evidence to support the prediction that DMSO can induce transient water pores in cell membranes, which in turn facilitates the transport of active substances across membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09687688.2012.687460 | DOI Listing |
Nat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Architecture and Civil Engineering, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.
View Article and Find Full Text PDFACS Macro Lett
January 2025
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
We developed a unique water droplet templating method to fabricate polymer films with three-dimensionally ordered porous structures. This technique is based on a polymer/solvent/HO ternary system, and the key is to choose a volatile and hydrophobic solvent that is slightly miscible with HO. With the fast evaporation of the solvent, water droplets separate from the casting solution and condense from the air to act as pore templates inside the film and on the surface, respectively.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, China.
Light nonaqueous-phase liquids (LNAPLs) are the main source of organic pollution in soil and groundwater environments. The capillary zone, with varying moisture contents, is the last barrier against the infiltration of LNAPL pollutants into groundwater and plays an important role in their migration and transformation. However, the effect and mechanism of the moisture content in the capillary zone on LNAPL pollutant migration are still unclear.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!