Oxidative stress refers to a physiological state in which an imbalance between pro-oxidants and antioxidants results in oxidative damage. Oxidative stress has been associated with the development of numerous chronic diseases such as type 2 diabetes, cardiovascular disease (CVD), osteoporosis, and cancer. Endogenous production of free radicals occurs during normal physiological processes, such as aerobic metabolism, oxidation of biological molecules, and enzymatic activity. Environmental factors such as ultraviolet radiation, air pollution, and cigarette smoking can also contribute to the accumulation of free radicals in the body. Excess free radicals can damage tissues and promote the upregulation of disease-related pathways such as inflammation. Modulating oxidative stress by dietary supplementation with antioxidant micronutrients such as vitamins C and E or phytochemicals such as different carotenoids may help prevent or delay the development of certain diseases. However, research on antioxidant supplementation and disease has yielded inconsistent findings, which may be due, in part, to interindividual genetic variation. Polymorphisms in genes coding for endogenous antioxidant enzymes or proteins responsible for the absorption, transport, distribution, or metabolism of dietary antioxidants have been shown to affect antioxidant status and response to supplementation. These genetic variants may also interact with environmental factors, such as diet, to determine an individual's overall antioxidant status. This chapter examines current knowledge of the relationship between genetic variation and dietary antioxidant status.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-398397-8.00008-3 | DOI Listing |
PLoS One
January 2025
Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America.
Nutritional status being the first line of defense for host plants, determines their susceptibility or resistance against invading pathogens. In recent years, the applications of plant nutrient related products have been documented as one of the best performers and considered as alternatives or/and supplements in plant disease management compared to traditional chemicals. However, knowledge about application of plant nutrient related products for the management of destructive fungal pathogen Fusarium oxysporum f.
View Article and Find Full Text PDFCurr Diabetes Rev
January 2025
Dept. of Pathology Proficiency Healthcare Diagnostics Laboratory, Al Ain, 97751, United Arab Emirates.
Objectives: Owing to the existing evidence of the implication of oxidative stress in the pathophysiology of type 2 diabetes mellitus (T2DM), the present study aims to investigate the correlation of serum total antioxidant status (TAS) with comorbidities, various biochemical parameters, and duration of T2DM. Various factors contributing to disease prevalence and trends in other biochemical parameters are assessed.
Methods: A retrospective observational study of 246 patients with T2DM whose data were retrieved from the Proficiency Health Diagnostic Lab System in Al Ain.
Tissue Cell
January 2025
Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.
View Article and Find Full Text PDFJ Med Food
January 2025
Department of Biomedical sciences, Oklahoma State University Centre for Health and Science, Oklahoma, USA.
The effect of the aqueous extract of (AAI) on gentamicin (GEN)-induced kidney injury was investigated. The study involves 20 adult male Wistar rats (housed in four separate plastic cages) such that graded dosages of AAI were administered to the experimental group for 14 days per oral (PO) before exposure to GEN toxicity (100 mg/kg) for 1 week. At the end of the study, comparisons of some markers of renal functions, antioxidant status, and inflammatory and apoptotic markers were made between the control, GEN, and AAI-pretreated groups at < .
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
Wound healing is a complex natural process in which tissue requires recovering injured tissue cells. Helix aspersa has a high nutritional value and is considered a rich natural source of antioxidants and anti-inflammatory agents. So, this study aimed to assess the effect of soft tissue crude extract and mucous of H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!