Testing for differentially-expressed microRNAs with errors-in-variables nonparametric regression.

PLoS One

Mathematics and Statistics Department, University of South Alabama, Mobile, Alabama, United States of America.

Published: September 2012

MicroRNA is a set of small RNA molecules mediating gene expression at post-transcriptional/translational levels. Most of well-established high throughput discovery platforms, such as microarray, real time quantitative PCR, and sequencing, have been adapted to study microRNA in various human diseases. The total number of microRNAs in humans is approximately 1,800, which challenges some analytical methodologies requiring a large number of entries. Unlike messenger RNA, the majority of microRNA (>60%) maintains relatively low abundance in the cells. When analyzed using microarray, the signals of these low-expressed microRNAs are influenced by other non-specific signals including the background noise. It is crucial to distinguish the true microRNA signals from measurement errors in microRNA array data analysis. In this study, we propose a novel measurement error model-based normalization method and differentially-expressed microRNA detection method for microRNA profiling data acquired from locked nucleic acids (LNA) microRNA array. Compared with some existing methods, the proposed method significantly improves the detection among low-expressed microRNAs when assessed by quantitative real-time PCR assay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360044PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037537PLOS

Publication Analysis

Top Keywords

microrna
8
low-expressed micrornas
8
microrna array
8
testing differentially-expressed
4
micrornas
4
differentially-expressed micrornas
4
micrornas errors-in-variables
4
errors-in-variables nonparametric
4
nonparametric regression
4
regression microrna
4

Similar Publications

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown pathogenesis with no effective treatment currently available. Given the regulatory roles of lncRNAs (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3), miRNAs (miR-218-5p, miR-126-3p, miR-200a-3p, miR-18a-5p, miR-29a-3p), and their target protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in the TGF-β/SMAD3, Wnt/β-catenin, focal adhesion, and PI3K/AKT signaling pathways, we investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with IPF. Lung tissue and blood samples were collected from 33 newly diagnosed, treatment-naive patients and 70 healthy controls.

View Article and Find Full Text PDF

In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!