Accumulation of aluminium and physiological status of tree foliage in the vicinity of a large aluminium smelter.

ScientificWorldJournal

Section of Pollution and Bioindicators, Multidisciplinary Institute of Plant Biology, Faculty of Physical and Natural Sciences, National University of Córdoba, Avenida Vélez Sársfield 1611, X5016CGA Córdoba, Argentina.

Published: September 2012

A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354667PMC
http://dx.doi.org/10.1100/2012/865927DOI Listing

Publication Analysis

Top Keywords

tree foliage
8
vicinity large
8
large aluminium
8
pollution gradient
8
physiological parameters
8
lipid oxidation
8
oxidation products
8
accumulation aluminium
4
aluminium physiological
4
physiological status
4

Similar Publications

Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.

View Article and Find Full Text PDF

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

Foliar traits can reflect fitness responses to environmental changes, such as changes in nutrient availability. Species may respond differently to these changes due to differences in traits and their plasticity. Traits and community composition together can influence forest nutrient cycling.

View Article and Find Full Text PDF

Thermal ecology of the Mexican Garter Snake (): temporal and spatial variations.

PeerJ

January 2025

Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.

Heterogeneous environments provide different daily and seasonal thermal conditions for snakes, resulting in temporal and spatial variations in body temperature (Tb). This study analyzes the Tb of in the forest and grassland of a Mexican locality through daily and seasonal profiling. The patterns were obtained from seminatural enclosures in the field with a point sampling strategy to analyze temporal and spatial variations in Tb.

View Article and Find Full Text PDF

Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!