Poly (ethylene terephthalate) fibre [PET] is the commonly used fibre for majority of end-use applications, however, the desire for improved textile properties such as wettability or hydrophilicity are increasing. Biotechnology can be defined as the application of scientific and engineering to the processing of materials by biological agents to provide goods and services. The environmental issues associated with the textile processing are not new. Currently and in the years to come, besides lower cost of operation, improved durability, wear comfort and development of new attributes for textiles, the new criteria for judging the new processes is ecology. This paves the way for biotechnology. This article throws light on the applications of enzymes for the treatment of polyester fabrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209892PMC
http://dx.doi.org/10.1007/s12088-011-0163-9DOI Listing

Publication Analysis

Top Keywords

treatment polyester
8
role biotechnology
4
biotechnology treatment
4
polyester fabric
4
fabric poly
4
poly ethylene
4
ethylene terephthalate
4
terephthalate fibre
4
fibre [pet]
4
[pet] commonly
4

Similar Publications

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic syndrome involving urinary frequency, urgency, and bladder discomfort. These IC/BPS symptoms can significantly impact individuals' quality of life, affecting their mental, physical, sexual, and financial well-being. Individuals sometimes rely on peer-to-peer support to understand the disease and find methods of alleviating symptoms.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!