Curcumin is known to exert its anticancer effect either by scavenging or by generating reactive oxygen species (ROS). In this study, we report that curcumin-mediated rapid generation of ROS induces apoptosis by modulating different cell survival and cell death pathways in HuT-78 cells. Curcumin induces the activation of caspase-8, -2, and -9, alteration of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-3 and concomitant PARP cleavage, but the addition of caspase inhibitors only partially blocked the curcumin-mediated apoptosis. Curcumin also downregulates the expression of antiapoptotic proteins c-FLIP, Bcl-xL, cellular inhibitor of apoptosis protein, and X-linked IAP in a ROS-dependent manner. Curcumin disrupts the integrity of IKK and beclin-1 by degrading Hsp90. Degradation of IKK leads to the inhibition of constitutive NF-κB. Degradation of beclin-1 by curcumin leads to the accumulation of autophagy-specific marker, microtubule-associated protein-I light chain 3 (LC3), LC3-I. Our findings indicate that HuT-78 cells are vulnerable to oxidative stress induced by curcumin and as a result eventually undergo cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-12-0141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!