Recombinant expression and characterization of an endoglucanase III (cel12a) from Trichoderma harzianum (Hypocreaceae) in the yeast Pichia pastoris.

Genet Mol Res

Laboratório de Biologia Molecular, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil.

Published: May 2012

Filamentous fungi from the genus Trichoderma have been widely investigated due to their considerable production of important biotechnological enzymes. Previous studies have demonstrated that the T. harzianum strain IOC-3844 has a high degree of cellulolytic activity. After excluding the native signal peptide, the open reading frame of the T. harzianum endoglucanase III enzyme was cloned in the expression vector pPICZαA, enabling protein secretion to the culture medium. The recombinant plasmid was used to transform Pichia pastoris. Recombinant expression in the selected clone yielded 300 mg pure enzyme per liter of induced medium. The recombinant enzyme proved to be active in a qualitative analysis using Congo red. A quantitative assay, using dinitrosalicylic acid, revealed a high degree of activity at pH 5.5 and around 48°C. This information contributes to our understanding of the cellulolytic repertory of T. harzianum and the determination of a set of enzymes that can be incorporated into mixes for second-generation ethanol production.

Download full-text PDF

Source
http://dx.doi.org/10.4238/2012.May.21.11DOI Listing

Publication Analysis

Top Keywords

recombinant expression
8
endoglucanase iii
8
pichia pastoris
8
high degree
8
medium recombinant
8
recombinant
4
expression characterization
4
characterization endoglucanase
4
iii cel12a
4
cel12a trichoderma
4

Similar Publications

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from (AACC) into the diploid (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs.

View Article and Find Full Text PDF

To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in . The resulting recombinant plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen.

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

Objectives: The osteogenic potential of periodontal ligament stem cells (PDLSCs) is crucial for periodontal tissue regeneration. Prolonged and excessive oxidative stress (OS) impairs the osteogenic function of PDLSCs. Recently, Semaphorin 3A (Sema3A) has been reported to have multiple roles in bone protection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!