Analytical integral evaluation is a central task of modern quantum chemistry. Here we present a general method for evaluating differentiated integrals over standard Gaussian and mixed Gaussian/plane-wave hybrid orbitals. The main idea is to have a representation of basis sets that is flexible enough to enable differentiated integrals to be reinterpreted as standard integrals over modified basis functions. As an illustration of the method, we report a very simple implementation of Hartree-Fock level geometrical derivatives in finite magnetic fields for gauge-origin independent atomic orbitals, within the London program. As a quantum-chemical application, we optimize the structure of helium clusters and some well-known covalently bound molecules (water, ammonia and benzene) subject to strong magnetic fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp40965h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!