The serious global TB epidemic coupled with limited diagnostic and therapeutic technologies necessitate the study of the role phage in TB treatment. Mycobacterium phage have been used for TB diagnosis, but the accuracy of such methods needs to be improved. Phage have various advantages in treating many kinds of bacterial infection, and coupled with the abuse and misuse of antibiotics, and the increasing prevalence of drug-resistant bacteria, they have been studied as a novel therapy to support antibiotics. The study of phage in TB therapy has developed from the selection of appropriate phage to the simultaneous use of multiple phage and even the use of purified lyase proteins. Though phage have great potential in TB therapy, the technology is still in the in vitro and animal experiment stages, and needs further study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/4080 | DOI Listing |
Nat Rev Immunol
January 2025
Departments of Genetics and Medicine, Stanford University, Stanford, CA, USA.
Nat Microbiol
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:
Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea. Electronic address:
This study was designed to evaluate the combined antimicrobial activity of selected phage cocktail (MS2+T7 phages) and essential oils (cinnamon, clove, oregano, and thymol) against Escherichia coli ATCC 15597. To select most effective phages, the lytic abilities of individual phages (MS2, phiX174, and T7) and their phage combinations were assessed using the phage spot test and plaque assay at various multiplicity of infections (MOIs) ranging from 0.01 to 100.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!