In this paper, we present a novel wavelet-based compression algorithm for multiview images. This method uses a layer-based representation, where the 3-D scene is approximated by a set of depth planes with their associated constant disparities. The layers are extracted from a collection of images captured at multiple viewpoints and transformed using the 3-D discrete wavelet transform (DWT). The DWT consists of the 1-D disparity compensated DWT across the viewpoints and the 2-D shape-adaptive DWT across the spatial dimensions. Finally, the wavelet coefficients are quantized and entropy coded along with the layer contours. To improve the rate-distortion performance of the entire coding method, we develop a bit allocation strategy for the distribution of the available bit budget between encoding the layer contours and the wavelet coefficients. The achieved performance of our proposed scheme outperforms the state-of-the-art codecs for several data sets of varying complexity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2012.2201490 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!